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A B S T R A C T

This paper studies a balance whose unobservable fulcrum is not necessarily located at the middle of its two pans.
It presents three different models, showing how this lack of symmetry modifies the observation, the formalism
and the interpretation of such a biased measuring device. It argues that the biased balance can be an interesting
source of inspiration for our abstract understanding of how a measuring device influences the measurement
process.

Then, at last, as they were nearing the fountains for the fourth time, the
father of all balanced his golden scales and placed a doom in each of
them, one for Achilles and the other for Hector. As he held the scales by
the middle, the doom of Hector fell down deep into the house of Hades-
and then Phoebus Apollo left him.
Homer, Iliad XXII.

Give me a place to stand on, and I can move the earth.
Archimedes

1. Introduction

What would have happened had Apollo not taken his scales by the
middle? Depending on what we assume to observe with such a biased
measuring device, how can we formalize empirical observation and
how can we interpret the numbers issued from measurement? This
paper proposes a rigorous study of these questions in the context of a
scale, or balance, that is not necessarily composed of arms of equal
lengths.

A main motivation for broadening our understanding of measure-
ment with the study of a biased balance lies in the universality of the
unbiased balance for measurement and judgment. Osiris uses a balance
to measure the soul of the dead in ancient Egypt. In the Greek epic
tradition, deities like Apollo use a balance to decide of the fate of
heroes. As a measuring device, it is discussed by Plato, Aristotle, Euclid
and Archimedes [11,24]. It appears in the Bible as a symbol for rigor
and exactness and in the Koran as a symbol of supreme wisdom. It

symbolizes the invariable middle in ancient China, is part of the San-
skrit mythology and of the Indian and Tibetan spiritual traditions [5].
In the middle ages, the balance was essential to evaluate the price of
goods and to allow for the development of trade [13]. Nowadays, it is a
symbol of justice all over the modern world. It is ubiquitous in the
philosophy of science [3,8,4] and is a seminal example for the foun-
dations of measurement (e.g. [9,27,25]). Historically, the equal-arm
balance has been a model for the measurement of objects and for the
intuition of unbiased judgment. By studying a biased balance, we in-
tend to better understand how measurement is affected by a biased
measuring device and how biased judgements may be modelled.

This is especially true for the representational theory of measure-
ment [9]. This abstract approach to the foundations of measurement
formulates formal axioms that can describe empirical observation and
be necessary and sufficient to prove the existence and uniqueness of a
measuring scale. Let us show how this works with an equal-arm bal-
ance. Suppose we position an object, denoted x, on one of its pan and an
object y on the other pan. Suppose that we observe that x is lower than y.
This observation is formally described with a binary relation ≻0 as
“ ≻x y0 ”. Adding another object z to x,we observe that x with z are
lower than y. Since this happens for any object z, the empirical reg-
ularity of such an observation leads to assume the following property:

≻ ⇒ ∘ ≻for all x y z x y x z y, , : ( ) ,0 0

where “∘” naturally means the operation of jointly positioning two
objects on the same pan of the balance. Further axioms then reflect the
laws or regularities that can be observed, including in particular the
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following additive independence property:

≻ ⇔ ∘ ≻ ∘for all x y z x y x z y z, , : ( ) ( ).0 0

With sufficient axioms characterizing such an abstract and idealized
setting (the measurement is performed in a locally uniform gravita-
tional field, there is no uncertainty nor any other influence on the
measuring process, etc.), the task of representational measurement is
then to prove the existence of a function, say φ, which assigns a number
to each object such that an object is lower than another on the balance
if and only if it is assigned a greater number. Formally, we prove that
there exists a real-valued function φ such that

≻ ⇔ >x y φ x φ y( ) ( ),0

∘ = +φ x y φ x φ y( ) ( ) ( ).

Such a representation theorem builds on Hölder’s theorem (see [23]
for an English translation) and the theory of extensive measurement
(see [9, Chapter 3]). In such an abstract and idealized setting and be-
cause the balance is assumed to be of equal arms, the number φ x( ) can
be interpreted as the mass of x as in classical mechanics. The function φ
is unique up to multiplication by a positive constant and is called a
ratio-scale (see [31]). Systematic predictions can be justified by this
formalization. For instance, if the sum of the mass of y and the mass of z
is greater than the mass of x, we predict with certainty that we will
observe that y with z is lower than x. With this abstract and idealized
model of the equal-arm balance (including the assumptions of a locally
uniform gravitational field, etc.), the observed relation between objects
does not depend on the measuring device and its formalization does not
depend on the observer. Also, the observed empirical relation is for-
malized with formal (non-numerical) statements which univocally
correspond with observation. Finally, a numerical representation is
provided which measures objects and the function alone suffices to this
measurement. Things are different with the biased balance. Depending
on what we observe, the bias may induce less empirical regularities that
must be reflected with weaker, and thus more general, axioms. A first
question arises as whether we can still measure objects with a ratio-
scale. Another question is whether we can measure the bias of the
balance and if yes, what does that measure means.

A biased balance is a two-arm balance whose fulcrum is not ne-
cessarily located at the middle of the two pans. The principle of the
balance with unequal arms as a measurement of torque has long been
understood, at least since Archimedes’ proof of the principle of the lever
(Propositions 6 and 7 of Book I of On the equilibrium of the planes, see
[11, p. 192]). Also, the so-called Roman or Steelyard balance, where
objects positioned on a tray at one end of the beam are balanced by
moving a counterweight along the opposite side of the beam, has been
employed to weigh large bodies from the earliest time. Not only the
principle of the lever had to be invoked, but also the account of the
weight of the tray (or hook) used to hold the object to be weighed,
which induces some complications (see for instance the Liber de Canonio
in [24]). As shown in Suppes [32], these earlier mathematical ap-
proaches are very close to the contemporaneous theory of conjoint
measurement [9, Chapter 6]. What they share in particular is that they
start with two quantities (here weights and distances) which can be
manipulated independently in order to observe their conjoint effect. In
particular, it is assumed possible to select the distances from the ful-
crum so that they are of appropriate proportions. Also, it is assumed
that distances can be divided into segments of equal length. In this
manner, we can use the device to measure torque and from the mea-
surement of distance derive an indirect measurement of weights.

Our study of the biased balance is of interest and novelty because it
does not assume that the distance from the fulcrum is an observable
primitive. Depending on what we observe as a relation among objects,
we characterize the implicit role of the bias. Hence, we do not start
from two quantities playing similar roles but with one that is observable
(the objects positioned on the balance and acting on it with their mass)

and infer the role of a factor that is not directly observable (the bias of
the balance). Because of the hidden role of the bias, the relation be-
tween objects presents less regularity. Therefore, we need to relax some
of the properties of the axioms that are supposed to describe the em-
pirical observation of an equal-arm balance. The biased balance being a
form of generalization of the equal-arm balance (that the fulcrum is
located in the middle is a special case), it provides a model as to how
the representational theory of measurement can be generalized. For
instance, the representational theory of measurement treats axioms
such as completeness and transitivity as necessary for the existence of a
ratio-scale.1 The theory of biased measurement [15–17,14] shows how
we can derive the existence of a ratio-scale while relaxing such axioms.

In order to study different assumptions about what can be observed
and different formalizations of empirical observation, this paper pre-
sents three models of the biased balance. Each model assumes different
ways to observe the behavior of the biased balance. Thus, each model
shows distinct empirical regularities which are reflected in different set
of axioms. Each set of axioms leads to a representation theorem proving
that, even with the irregularities emanating from the bias of the bal-
ance, a ratio-scale measure of the mass of objects can be shown to exist.
These theorems also reveal a numerical factor which quantifies these
irregularities and which intuitively corresponds to the bias of the bal-
ance. The interpretation of such number is not necessarily obvious, and
we make precise what it means and what it quantifies. The biased
balance hence leads to a more detailed analysis of the correspondence
between empirical observation and its formalization as a relational
structure. This step is usually taken for granted in the theory of re-
presentational measurement, due to an implicit assumption of the
symmetry of the measuring device. Methodologically, we study the
biased balance following three fundamental questions:

1. What do we observe and how can we formally describe it?
2. What numerical representation can be constructed from this formal

description?
3. What is the meaning of the numbers that we have constructed?

These questions are essential to a clear and precise understanding of
the use of numbers and of mathematical models in sciences. Because the
biased balance shows how the theory of representational measurement
may be broadened to apply to phenomena which do not present the
typical empirical regularities assumed by the symmetry of the mea-
suring device, it contributes to address one of its most interesting cri-
tiques (e.g. [28,20,21,2]).

The rest of the paper is structured as follows. In Section 2, we
present the basic terms and formal properties that we use to study a
biased balance. We also introduce the 3 models. In Section 3, we pre-
sent the first model which assumes that we can observe on which arm of
the balance each object is positioned. This model is the closest to the
intuition that the biased balance measures the torque and that a con-
joint approach should allow to measure both the mass and the distance
that compose it. This is carried out by formally defining “extended
objects” that are composed of an object together with the arm on which
it lies. In that case, we show how we can conjointly construct a ratio-
scale that measures the mass of objects and, for each biased balance, a
unique pair of numbers that measures the distances between the ful-
crum and each pan. In Section 4, a second model assumes that we can
observe whether a given object is positioned on the left or on the right
from the observer perspective. We do not however define “extended
objects” and let the formalism implicitly reflect the left and right dis-
tinction that depends on the observer. We show that this corresponds to
the most general mathematical properties but still allows for a ratio-
scale measuring objects to be constructed. Further, we show that we can

1 Mathematically, any representation of the form ≿ ⇔ ⩾x y φ x φ y( ) ( ) must assume
that the relation ≿ is complete and transitive.
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