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A B S T R A C T

Monitoring chemical processes with optical spectroscopy involves a trade-off between high-frequency sampling
to capture process dynamics and good signal-to-noise ratio (SNR). This contribution presents a strategy to
maximize sampling frequency while maintaining a high SNR during in-line process monitoring.

To achieve this, a novel method to determine the analyte-specific SNR from a single multicomponent spec-
trum with overlapping peaks based on multivariate Indirect Hard Modeling (IHM) regression is presented. The
method is extended to optimize the Raman acquisition time dynamically based on the current SNR. After each
measurement, the acquisition time is adjusted to reach the target SNR of a component of interest. The method
maximizes the number of individual measurements while sustaining the target SNR despite highly variable
signal intensity.

The method is applied to monitor polymerization reactions showing that it is suitable for reliably monitoring
high-rate reactions of multiple spectrally-similar components.

1. Introduction

Optical spectroscopy (i.e. UV/VIS, IR and Raman spectroscopy) is
extensively used in process development and monitoring for identifi-
cation and quantification of components in solid, liquid and gaseous
samples. These samples can consist of single, homogeneous components
or multicomponent mixtures and heterogeneous phases. The non-de-
structive nature of optical spectroscopy also qualifies for in-line reac-
tion monitoring.

To monitor chemical reactions, high-sampling frequency of spectra
and sufficient signal-to-noise ratio (SNR) of each spectrum are both
necessary, which necessitates a trade-off in process monitoring. The
SNR increases with the square root of the acquisition time [1] (i.e., the
effective duration of sample irradiation and simultaneous signal col-
lection). However, the sample composition changes due to reaction and
therewith the signal intensities change, possibly enabling shorter ac-
quisition times during the process.

An illustrative application is the synthesis of microgels [2], in which
multiple weakly Raman-active and spectrally similar components at
low concentrations polymerize at 80 °C to particles within 5–8min [3].
The process dynamics mandate a sampling frequency of at least 5
spectra per minute to reveal differences in conversion between mono-
mers. In practice, the acquisition time is set in advance and then kept
constant during reaction. At high signal intensity, this procedure

generates less individual spectra than possible. At low signal intensity,
it might generate spectra that cannot be quantified due to low SNR.
Further, it does not account for non-chemical related changes in mea-
surement signal such as foreign signal contributions (e.g., due to cosmic
rays) or signal loss due to process probe fouling. Therefore, an adaptive
adjustment of the acquisition time to reach and maintain a target SNR
would be desirable.

The reliable identification and precise quantification of reaction
mixtures requires the assignment and correlation of spectral peaks to
the chemical components with regards to different intensity and (un-
wanted) noise. The SNR as a quantitative measure can be determined
either using the intensity-variation of an analyte peak of multiple
measurements or from remaining noise in the analyte peak region after
subtraction of one spectrum from another [4]. During reaction, the
analyte of interest might change, such as a change from monomer to
polymer during polymerization. For SNR determination, this involves a
change of the position of the signal peak. It is therefore necessary to
determine the SNR individually for each component and to auto-
matically select the component of interest during reaction monitoring.

Spectra are quantified typically using multivariate regression such
as partial least squares (PLS) [5,6] or classical least squares (CLS) [7]
regression. While both methods quantify concentrations from spectra of
multicomponent mixtures, the CLS model contains the structure of pure
component spectra. This allows to assign certain peak to individual
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components. A further development of CLS is Indirect Hard Modeling
(IHM) regression [8,9]. In IHM, spectral pure component models are
created by fitting multiple adaptive Voigt profiles to pure component
spectra [10]. Mixture spectra can then be modeled by calculation of the
sum of these pure component models using weights. As for CLS, the
pure component model weights are optimized to minimize spectral
differences (i.e., the sum of squared spectral residuals, RMS) between
mixture model and measurement by a least squares optimizer [10]. IHM
is reliable in the sense that the model is fitted to a broad wavenumber
range, which compensates for random noise to a certain extent [8].
Further, each individual Voigt profile can account for nonlinear spectral
changes, i.e., shifts and shape changes, which is termed peak-interac-
tion. IHM reaches additional robustness by so-called ratiometric re-
gression. Here, quotients of pure component weights are regressed
while enforcing predicted fractions to sum up to unity to observe the
mass balance. Since the pure component models preserve the spectral
structure, the intensity of individual components can be extracted in
case of overlapping peaks. However, SNR analysis has not been carried
out before with IHM.

In this work, we define a component-specific SNR using IHM pure-
component intensity as signal and spectral RMS as noise. We then op-
timize the acquisition time during process monitoring by comparison of
the current SNR with a target SNR. The measurement setup is sum-
marized in the Experimental Section. Then, the developed method is
presented in the Methods Section, while its results are analyzed and
discussed in the Results Section. As a case study, the method is de-
monstrated for Raman process monitoring of a microgel synthesis.

2. Experimental

Raman spectra were acquired using a RXN2 Process Analyzer from
Kaiser Optical Systems. It is equipped with an Invictus 785 nm laser
with 400 mW excitation power. The Raman signal was collected using a
long-focus immersion optic. The device was controlled using the soft-
ware Analyzer Control SDK (Version 5.0.9.1, Kaiser Optical Systems
Inc.), which includes setting of acquisition parameters, taking of spectra
and saving of measurement files.

For model calibration, Raman spectra were taken from 20 mixtures
of monomers N-vinylcaprolactam (VCL), N-Isopropylacrylamide
(NIPAM) and PVCL-PNIPAM-microgels in water. Sample composition is
given in Table S1 in the Supplementary Material. For SNR determina-
tion, seven of these samples were measured at acquisition times 1, 2, 5,
10, 15, 20, 30 and 60 s with 10 repeated measurements of each sample
and acquisition time. In-line process spectra were taken during mi-
crogel syntheses via precipitation polymerization [11] as described in
Meyer-Kirschner et al. (2016) [3]. In brief, 4.43 g of VCL and NIPAM at
different ratios were dissolved in 300ml water together with a surfac-
tant and crosslinker and heated to 60–80 °C. After addition of an in-
itiator, the monomers polymerize to turbid microgel particles within
5–20min. Further details for using microgel synthesis as application
example are given in the Supplementary Material.

3. Methods

IHM regression was carried out in Peaxact 4.0.0 (S-Pact GmbH,
Germany, 2015). All other data processing was conducted in Matlab
R2015b (MathWorks Inc., Natick, MA, 2015). This includes computa-
tion of analyte-specific SNR as well as communication with the
Analyzer Control SDK to control of the spectrometer for dynamic ad-
justment of the Raman acquisition time.

3.1. Model development and calibration

To determine sample composition and SNR from Raman spectra of
the microgel system, IHM pure component models were created for the
components water, the monomers VCL and NIPAM as well as PVCL-

PNIPAM-copolymer microgel. The pure component models for water
and VCL were taken from a previously published model [3]. The models
for NIPAM and copolymer were created analogously to previous pure
component models using complemental hard modeling (CHM) [9]. To
this end, calibration spectra of aqueous NIPAM and microgel were
taken in small glass vials. To extract pure component models from these
binary-mixture spectra, first the previously created water model was
imported and then further peak functions were added to fit the analyte
peaks. Removing the water model resulted in the pure component
models. The mixture model contains the pure component models and a
linear baseline. Apart from a range selection of 1000–2000 cm−1, no
further pretreatment or standardization was done on the spectra. The
model was calibrated using ratiometric regression, with peak-interac-
tion and leave-10%-out cross-validation.

3.2. Analyte-specific signal-to-noise ratio

For single-component spectra, the SNR is given as =SNR S
σ = S

σ2
,

where the intensity S is the average intensity of the analyte peak above
the baseline. σ is the intensity standard deviation and σ2 the corre-
sponding variance. The standard deviation σ can be determined from
the intensity variation of the analyte peak from multiple measurements.
Therefore, several measurements of an unaltered sample are necessary.
It can also be determined from subtraction of two spectra, leaving only
noise. σ is then defined as standard deviation of the remaining differ-
ence signal in the analyte peak region divided by 2 [4].

The analyte signal can only be determined if the selected analyte
peak is not superimposed by signal from other components. For over-
lapping multicomponent spectra, care has to be taken to exclusively
extract the analyte intensity. Instead of using the baseline-corrected
peak intensity as analyte signal, in this work the signal is determined
for each analyte individually as the intensity of the strongest peak of the
particular fitted pure component model. When using the pure compo-
nent (PC) intensity as signal, the corresponding noise can either be
determined using the variation of the model intensity or from the
spectral residuals between model and measurement. In the latter case,
only one spectrum is necessary to determine a SNR value. A perfor-
mance comparison of established and IHM-based methods regarding
the resulting SNR and the amount of input measurements necessary is
given in the Supplementary Material. The IHM-based method is found
to reach identical SNR values compared to the established methods
using only a single spectrum. In the remainder of this work, the SNR is
determined using the pure component intensity as signal and the
spectral residuals as noise.

3.3. Optimal acquisition time

Based on the insight that SNR varies during reaction, we propose a
procedure for dynamic adjustment of the acquisition time during re-
action by continuous comparison of the current SNR to a target SNR
that is required for reliable spectral quantification. The procedure is
shown in Fig. 1. An initial acquisition time needs to be specified, de-
termined for instance from experience or lab analysis. A spectrum is
acquired, processed and stored. Next, a check is made if the experiment
is finished. Common criteria are the passage of a specified time, de-
tection of a desired product concentration or external intervention. If
the experiment is not finished, the established route (dashed line) is to
acquire the next spectrum with identical acquisition time. Instead,
using optimal acquisition time, the spectrum is checked for validity.
Common criteria are a threshold for minimum Raman signal and ab-
sence of foreign spectral contributions such as peaks from other com-
ponents or cosmic rays. When using IHM the latter can be verified by
absence of pronounced peaks in the spectral residuals. If the spectrum
does not pass, another spectrum is acquired. Otherwise, the SNR of the
component of interest is determined. The current SNR is then compared
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