On the use of algebraic geometry for the design of high-gain observers for continuous-time polynomial systems

Laura Menini* Antonio Tornambè*
* Dip. Ingegneria Civile e Ingegneria Informatica Università di Roma Tor Vergata, Roma, Italy
(e-mail: [menini,tornambe]@disp.uniroma2.it)

Abstract

The goal of this paper is to apply some concepts and techniques from algebraic geometry to study the observability of nonlinear continuous-time polynomial systems. After deriving some new results for observability and embeddings, it is shown how to use such concepts to easily design high-gain observers. The proposed technique is illustrated by an application to the well known Rossler oscillator.

Keywords: Algebraic geometry, observability, high-gain observers, Rössler oscillator.

1. INTRODUCTION

One of the classical problems in control theory is that of designing state observers to obtain in real time estimates of unmeasurable state variables, using the available measured outputs. This has motivated the study of the structural property of observability and of various techniques for designing state observers, as in the works by Krener and Respondek (1985); Isidori (1995); Nijmeijer and van der Schaft (1990); Tsinias (1990); Kazantzis and Kravaris (1998); Menini and Tornambe (2002a,b, 2010a,b, 2011a).

Some of the works closer to the problems considered here are by Sussmann (1978); Sontag (1979); Takens (1981); Aeyels (1981a,b); Jouan and Gauthier (1996). In some of such works the problem of observability through sampled measurements is considered. In particular, an application using a CAS (Computer Algebra System) of the developments by Sontag (1979) was done by Nešić (1998).

When dealing with polynomial systems, it is very useful to use techniques from Algebraic Geometry, which provide the natural tools to state clear and easily testable results. This has been recognized by a variety of authors Diop (1991); Helmke et al. (2003); Tibken (2004); Menini and Tornambe (2014); Kawano and Ohtsuka (2013); Menini and Tornambe (2013a,b). The main novelty of this paper, with respect to such works, is that here observability and embedding problems are studied with the focus of observer design, whence results based on algebraic geometry are stated that allow the easy writing of explicit forms for an inverse of the observability map and of an embedding of the given system. Although we illustrate the application of our techniques with respect to high gain observers (see, e.g.,Tornambe (1989); Esfandiari and Khalil (1992); Gauthier and Kupka (2001); Hammouri et al. (2010)), it is stressed that, in principle, they can be applied to other ways of designing observers.

2. PRELIMINARIES AND NOTATION

The goal of this section is to briefly resume the basic notions of algebraic geometry (Cox et al. (1998, 2007)) that will be used in the sequel.
Let $x \in \mathbb{R}^{n}, x=\left[\begin{array}{lll}x_{1} & \ldots & x_{n}\end{array}\right]^{\top}$, let $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ (or, shortly, $\mathbb{R}[x]$) be the commutative ring of all scalar polynomials in x_{1}, \ldots, x_{n}, and let $\mathbb{R}\left(x_{1}, \ldots, x_{n}\right)$ (or, shortly, $\left.\mathbb{R}(x)\right)$ be the field of all scalar rational functions of $x_{1}, \ldots, x_{n} ; \mathbb{R}^{n}[x]$ denotes the set of vector functions with n entries in $\mathbb{R}[x]$.
Let p_{1}, \ldots, p_{m} be polynomials in $\mathbb{R}[x]$; the set
$\mathbf{V}_{n}\left(p_{1}, \ldots, p_{m}\right):=\left\{x \in \mathbb{R}^{n}: p_{i}(x)=0\right.$ for all $\left.i=1, \ldots, m\right\}$
is called the affine variety ${ }^{1}$ (briefly, variety) of \mathbb{R}^{n} defined by p_{1}, \ldots, p_{m}. As an example, $\mathbf{V}_{1}\left(x_{1}\right)$ is a point of \mathbb{R}^{1}, $\mathbf{V}_{2}\left(x_{1}\right)$ is a line of \mathbb{R}^{2}, and so on. If $\mathcal{V}_{a}=\mathbf{V}_{n}\left(p_{1}, \ldots, p_{m_{a}}\right)$ and $\mathcal{V}_{b}=\mathbf{V}_{n}\left(q_{1}, \ldots, q_{m_{b}}\right)$, for some polynomials p_{i} and q_{j} in $\mathbb{R}[x]$, then both $\mathcal{V}_{a} \cap \mathcal{V}_{b}$ and $\mathcal{V}_{a} \cup \mathcal{V}_{b}$ are varieties, and they are given by:

$$
\begin{aligned}
& \mathcal{V}_{a} \cap \mathcal{V}_{b}=\mathbf{V}_{n}\left(p_{1}, \ldots, p_{m_{a}}, q_{1}, \ldots, q_{m_{b}}\right) \\
& \mathcal{V}_{a} \cup \mathcal{V}_{b}=\mathbf{V}_{n}\left(p_{1} q_{1}, \ldots, p_{m_{a}} q_{1}, \ldots, p_{1} q_{m_{b}}, \ldots, p_{m_{a}} q_{m_{b}}\right)
\end{aligned}
$$

A subset \mathcal{I} of $\mathbb{R}[x]$ is a polynomial ideal (briefly, an ideal) if it satisfies:
(1) if $p, q \in \mathcal{I}$, then $p+q \in \mathcal{I}$;
(2) if $p \in \mathcal{I}$ and $q \in \mathbb{R}[x]$, then $p q \in \mathcal{I}$.

Let p_{1}, \ldots, p_{m} be polynomials in $\mathbb{R}[x]$; it is possible to show that the set
$\left\langle p_{1}, \ldots, p_{m}\right\rangle_{n}:=\left\{q_{1} p_{1}+\ldots+q_{m} p_{m}: q_{i} \in \mathbb{R}[x], i=1, \ldots, m\right\}$ is an ideal of $\mathbb{R}[x]$ and, in particular, it is called the ideal generated by p_{1}, \ldots, p_{m}.

[^0]An ideal \mathcal{I} is said to be finitely generated if there exist polynomials p_{1}, \ldots, p_{m} in $\mathbb{R}[x]$ such that $\mathcal{I}=\left\langle p_{1}, \ldots, p_{m}\right\rangle_{n} ;$ the set of the ideal generators $\left\{p_{1}, \ldots, p_{m}\right\}$ is called a basis of \mathcal{I}. By the Hilbert Basis Theorem (Cox et al., 2007), every ideal of $\mathbb{R}[x]$ is finitely generated. Clearly, if $\left\langle p_{1}, \ldots, p_{m_{a}}\right\rangle_{n}=\left\langle q_{1}, \ldots, q_{m_{b}}\right\rangle_{n}$, for some polynomials p_{i} and q_{j} in $\mathbb{R}[x]$, then $\mathbf{V}_{n}\left(p_{1}, \ldots, p_{m_{a}}\right)=\mathbf{V}_{n}\left(q_{1}, \ldots, q_{m_{b}}\right)$.
Let $\mathcal{V}=\mathbf{V}_{n}\left(p_{1}, \ldots, p_{m}\right)$ be the variety defined by p_{1}, \ldots, p_{m} in $\mathbb{R}[x]$. By definition, polynomials p_{1}, \ldots, p_{m} vanish on \mathcal{V}, whence all polynomials belonging to $\left\langle p_{1}, \ldots, p_{m}\right\rangle_{n}$ vanish on \mathcal{V}. Note that there may be polynomials $p \notin\left\langle p_{1}, \ldots, p_{m}\right\rangle_{n}$ that vanish on \mathcal{V}; this renders necessary the following definitions.

Let \mathcal{V} be a variety of \mathbb{R}^{n}; it is possible to show that the set

$$
\begin{equation*}
\mathbf{I}_{n}(\mathcal{V}):=\left\{p \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]: p(x)=0 \text { for all } x \in \mathcal{V}\right\} \tag{1}
\end{equation*}
$$

is an ideal and, in particular, it is called the ideal of \mathcal{V}; note that the empty set \emptyset is a variety and that $\mathbf{I}_{n}(\emptyset)=\langle 1\rangle_{n}=$ $\mathbb{R}[x]$. Clearly, $\left\langle p_{1}, \ldots, p_{m}\right\rangle_{n} \subseteq \mathbf{I}_{n}\left(\mathbf{V}_{n}\left(p_{1}, \ldots, p_{m}\right)\right)$, and the equality $\left\langle p_{1}, \ldots, p_{m}\right\rangle_{n}=\mathbf{I}_{n}\left(\mathbf{V}_{n}\left(p_{1}, \ldots, p_{m}\right)\right)$ need not occur, e.g., if $n=1$, all the polynomials $x_{1}^{2} q\left(x_{1}\right)$ of $\left\langle x_{1}^{2}\right\rangle_{1}$, with $q \in \mathbb{R}\left[x_{1}\right]$, vanish on the variety $\mathcal{V}=\mathbf{V}_{1}\left(x_{1}^{2}\right)=\{0\}$, but $\mathbf{I}_{1}\left(\mathbf{V}_{1}\left(x_{1}^{2}\right)\right)=\left\langle x_{1}\right\rangle_{1}$ and $\left\langle x_{1}^{2}\right\rangle_{1} \neq\left\langle x_{1}\right\rangle_{1}$ since $p\left(x_{1}\right)=x_{1}$ vanishes on $\{0\}$, but does not belong to $\left\langle x_{1}^{2}\right\rangle_{1}$.
Let \mathcal{V}_{a} and \mathcal{V}_{b} be two varieties of \mathbb{R}^{n}, then
(1) $\mathcal{V}_{a} \subset \mathcal{V}_{b}$ if and only if $\mathbf{I}_{n}\left(\mathcal{V}_{a}\right) \supset \mathbf{I}_{n}\left(\mathcal{V}_{b}\right)$;
(2) $\mathcal{V}_{a}=\mathcal{V}_{b}$ if and only if $\mathbf{I}_{n}\left(\mathcal{V}_{a}\right)=\mathbf{I}_{n}\left(\mathcal{V}_{b}\right)$;
this, in particular, shows that the $\operatorname{map} \mathbf{I}_{n}(\mathcal{V})$ is one-to-one.
For instance if $n=1, \mathcal{V}_{a}=\{1\}$ and $\mathcal{V}_{b}=\{1,2\}$, then $\mathbf{I}_{1}\left(\mathcal{V}_{a}\right)=\left\langle x_{1}-1\right\rangle_{1}$ and $\mathbf{I}_{1}\left(\mathcal{V}_{b}\right)=\left\langle\left(x_{1}-1\right)\left(x_{1}-2\right)\right\rangle_{1}$, with $\mathbf{I}_{1}\left(\mathcal{V}_{a}\right) \supset \mathbf{I}_{1}\left(\mathcal{V}_{b}\right)$.
Let \mathcal{I} be an ideal of $\mathbb{R}[x]$; it is possible to show that the set

$$
\begin{equation*}
\mathbf{V}_{n}(\mathcal{I}):=\left\{x \in \mathbb{R}^{n}: p(x)=0 \text { for all } p \in \mathcal{I}\right\} \tag{2}
\end{equation*}
$$

is a variety and that $\mathbf{V}_{n}(\mathcal{I})=\mathbf{V}_{n}\left(p_{1}, \ldots, p_{m}\right)$ for any basis $\left\{p_{1}, \ldots, p_{m}\right\}$ of \mathcal{I}.
A variety \mathcal{V} can be studied through the corresponding ideal $\mathbf{I}_{n}(\mathcal{V})$ given by (1) and, conversely, an ideal \mathcal{I} can be studied through the corresponding variety $\mathbf{V}_{n}(\mathcal{I})$ given by (2), but $\mathbf{I}_{n}\left(\mathbf{V}_{n}(\mathcal{I})\right)$ need not coincide with \mathcal{I} (e.g., $\left.\mathbf{I}_{1}\left(\mathbf{V}_{1}\left(\left\langle x_{1}^{2}\right\rangle_{1}\right)\right)=\left\langle x_{1}\right\rangle_{1}\right)$, whence the map $\mathbf{V}_{n}(\mathcal{I})$ is not one-to-one (e.g., $\mathbf{V}_{1}\left(\langle 1\rangle_{1}\right)=\mathbf{V}_{1}\left(\left\langle 1+x_{1}^{2}\right\rangle\right)$ and $\langle 1\rangle_{1} \neq$ $\left.\left\langle 1+x_{1}^{2}\right\rangle_{1}\right)$.
Given any subset \mathcal{S} of \mathbb{R}^{n}, it is easy to check that

$$
\mathbf{I}_{n}(\mathcal{S}):=\left\{p \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]: p(x)=0 \text { for all } x \in \mathcal{S}\right\}
$$

is an ideal even if \mathcal{S} is not a variety; hence, $\mathbf{V}_{n}\left(\mathbf{I}_{n}(\mathcal{S})\right)$ is a variety that contains \mathcal{S}. In particular, it is the smallest variety containing $\mathcal{S} ; \mathbf{V}_{n}\left(\mathbf{I}_{n}(\mathcal{S})\right.$) is called the Zariski closure of \mathcal{S}. As an example that will be useful in the following, if $\mathcal{S} \subseteq \mathbb{R}^{n}$ is open, $\mathcal{S} \neq \emptyset$, then $\mathbf{I}_{n}(\mathcal{S})=$ $\{0\}$ and its Zariski closure coincides with the whole \mathbb{R}^{n} $\left(\mathbf{V}_{n}\left(\mathbf{I}_{n}(\mathcal{S})\right)=\mathbb{R}^{n}\right)$.
Some polynomials $q_{1}, \ldots, q_{m} \in \mathbb{R}[x]$ are algebraically dependent if there exists a non-zero polynomial $p \in \mathbb{R}[q]$, where $q=\left[\begin{array}{lll}q_{1} & \ldots & q_{m}\end{array}\right]^{\top}$, such that $p\left(q_{1}(x), \ldots, q_{m}(x)\right)=0$,
$\forall x \in \mathbb{R}^{n}$ (algebraically independent, otherwise). Necessary and sufficient condition for q_{1}, \ldots, q_{m} to be algebraically dependent is that $\operatorname{rank}_{\mathbb{R}(x)}\left(\frac{\partial q}{\partial x}\right)<m$.

Fix a total ordering $>$ of the monomials of $\mathbb{R}[x]$. For any $p \in \mathbb{R}[x]$, with $p \neq 0$, one can write

$$
p(x)=a_{1} x^{\alpha_{1}}+a_{2} x^{\alpha_{2}}+\ldots+a_{\ell} x^{\alpha_{\ell}}
$$

where $a_{i} \in \mathbb{R}, \alpha_{i}$ is a multi-index, $i=1,2, \ldots, \ell$, and $x^{\alpha_{1}}>x^{\alpha_{2}}>\ldots>x^{\alpha_{\ell}}$; this allows one to define the leading monomial $\mathrm{LM}(p)=x^{\alpha_{1}}$ and the leading coefficient $\mathrm{LC}(p)=a_{1}$ of p.
Let $\left\{p_{1}, \ldots, p_{m}\right\}$ be a basis of an ideal \mathcal{I} of $\mathbb{R}[x]$. A polynomial $r \in \mathbb{R}[x]$ is said to be reduced with respect to $\left\{p_{1}, \ldots, p_{m}\right\}$ if either $r=0$ or no monomial that appears in r is divisible by $\operatorname{LM}\left(p_{i}\right), i=1, \ldots, m$. A polynomial $r \in \mathbb{R}[x]$, which is reduced with respect to $\left\{p_{1}, \ldots, p_{m}\right\}$, is called a remainder of the division of $p \in \mathbb{R}[x]$ by $\left\{p_{1}, \ldots, p_{m}\right\}$ if $p-r \in\left\langle p_{1}, \ldots, p_{m}\right\rangle_{n}$.
Example 1. Fix the deglex (degree lexicographic) monomial ordering on $\mathbb{R}\left[x_{1}, x_{2}\right]$ with $x_{2}>x_{1}$. Let $p(x)=x_{1} x_{2}^{2}-$ x_{1} and $\left\langle p_{1}, p_{2}\right\rangle_{2}=\left\langle x_{1} x_{2}-x_{2}, x_{2}^{2}-x_{1}\right\rangle_{2}$. It is easy to see that $r_{1}=0$ and $r_{2}=x_{1}^{2}-x_{1}$ are both reduced with respect to $\left\{p_{1}, p_{2}\right\}$ and that $p=x_{2} p_{1}+p_{2}+r_{1}$ and $p=0 p_{1}+x_{1} p_{2}+r_{2}$, which show that the remainder of the division by an arbitrary basis need not be unique.

Let $\left\{g_{1}, \ldots, g_{m}\right\}$ be a set of non-zero polynomials in $\mathbb{R}[x]$. A basis $\left\{g_{1}, \ldots, g_{m}\right\}$ of an ideal \mathcal{I} of $\mathbb{R}[x]$ is called a Gröbner basis of \mathcal{I} if, for any $p \in \mathbb{R}[x]$, the remainder of the division of p by $\left\{g_{1}, \ldots, g_{m}\right\}$ is unique. Every non-zero ideal \mathcal{I} of $\mathbb{R}[x]$ has a Gröbner basis, which need not be unique ${ }^{2}$.

A monomial ordering on $\mathbb{R}\left[x_{a}, x_{b}\right]$, with $x_{a} \in \mathbb{R}^{n_{a}}$ and $x_{b} \in \mathbb{R}^{n_{b}}, n=n_{a}+n_{b}$, eliminates x_{a} if

$$
x_{a}^{\alpha}>x_{a}^{\beta} \Rightarrow x_{a}^{\alpha} x_{b}^{\gamma}>x_{a}^{\beta} x_{b}^{\delta}
$$

for all multi-indices α, β for which $x_{a}^{\alpha}>x_{a}^{\beta}$ and for all multi-indices γ, δ. For instance, the lexicographic ordering with $x_{1}>x_{2}>\ldots>x_{n}$ eliminates x_{1}, \ldots, x_{ℓ}, for all $1 \leq$ $\ell<n$. Let \mathcal{I} be an ideal of $\mathbb{R}\left[x_{a}, x_{b}\right]$. The elimination ideal of \mathcal{I} that eliminates x_{a} is $\mathcal{I} \cap \mathbb{R}\left[x_{b}\right]$. Let $\left\{g_{1}, \ldots, g_{m}\right\}$ be a Gröbner basis for a monomial ordering that eliminates x_{a}. Then, the set obtained from $\left\{g_{1}, \ldots, g_{m}\right\}$ by retaining only the elements that do not depend on x_{a} (i.e., $\left\{g_{1}, \ldots, g_{m}\right\} \cap$ $\left.\mathbb{R}\left[x_{b}\right]\right)$ is a Gröbner basis of the elimination ideal $\mathcal{I} \cap \mathbb{R}\left[x_{b}\right]$ for the monomial ordering on $\mathbb{R}\left[x_{b}\right]$ induced by $>$.
Example 2. Let $\mathcal{I}=\left\langle x_{1}+x_{2}^{2}, x_{1}-x_{2}\right\rangle_{2}$. Fix the lexicographic ordering with $x_{1}>x_{2}$, which eliminates x_{1}; a Gröbner basis of \mathcal{I} for such an ordering is $\left\{x_{2}^{2}+x_{2}, x_{1}-x_{2}\right\}$, whence the elimination ideal of \mathcal{I} that eliminates x_{1} is $\mathcal{I} \cap \mathbb{R}\left[x_{2}\right]=\left\langle x_{2}^{2}+x_{2}\right\rangle_{1}$; in particular, $\left\{x_{2}^{2}+x_{2}\right\}$ is a Gröbner basis of $\mathcal{I} \cap \mathbb{R}\left[x_{2}\right]$ for the induced ordering (in this case trivial).

3. OBSERVABILITY AND EMBEDDINGS OF POLYNOMIAL SYSTEMS

Consider the following polynomial system

$$
\begin{equation*}
\dot{x}=f(x) \tag{3a}
\end{equation*}
$$

[^1]
https://daneshyari.com/en/article/712128

Download Persian Version:

https://daneshyari.com/article/712128

Daneshyari.com

[^0]: ${ }^{1}$ In some texts $\mathbf{V}_{n}\left(p_{1}, \ldots, p_{m}\right)$ is called algebraic set, whereas the term affine variety is reserved for the case when $\mathbf{V}_{n}\left(p_{1}, \ldots, p_{m}\right)$ is irreducible.

[^1]: 2 By using the stronger notion of reduced Gröbner basis unicity is achieved, but this is not needed here.

