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1. INTRODUCTION

These last decades, numerous results have been proposed
for the control of electropneumatic systems, the main
part of these results being based on state feedback ap-
proaches: input-output linearization based control (Brun
et al. (1999)), sliding mode control (Girin et al. (2009);
Laghrouche et al. (2006); Plestan et al. (2013); Shtessel
et al. (2012); Smaoui et al. (2006 b); Taleb et al. (2013)),
backstepping control (Smaoui et al. (2006 a,b)), etc. How-
ever, these controllers require the measurement of state
variables. In practice, some state variables are not easy to
be measured directly by the sensors, like the velocity and
the acceleration, whereas they are required to compute the
control law. In order to overcome this difficulty and also
with the objective of minimizing the number of sensors,
some states estimation schemes can be proposed (Yan et al.
(2014)). One solution is the use of nonlinear state observer.
In Bornard et al. (1991), a high gain observer is proposed
for a class of nonlinear system. A sliding mode observer
is used by Pandian et al. (2002), so as to estimate the
chamber pressure for pneumatic actuators.

An alternative method to estimate the system state is
the numerical differentiation. According to the studies in
Gauthier and Kupka (1994), for an observable nonlinear
system, any state variables is a function of finite number
of time derivatives of the control and output variables.
Furthermore, the use of numerical differentiation schemes
enables a model-independent derivation. In recent years,
numerous technics have been proposed for the problem
of numerical differentiation. A robust exact differentiator
based on 2-sliding algorithm (see Levant (1993)) is pro-
posed by Levant (1998). It allows to estimate the first order
derivative of a bounded noisy signal. Such a differentiator
is used by Smaoui et al. (2005) for the acceleration esti-
mation of a pneumatic system. The sampling feature of
the differentiation computation is also taken into account
by Plestan and Glumineau (2010). The sliding mode dif-

ferentiator is generalized to the higher-order sliding mode
differentiator (Levant (2003)), which allows to estimate the
k-th order derivative of a bounded noisy signal. Moreover,
the so called chattering phenomenon is reduced through
the high order sliding mode theory. Another kind of differ-
entiator based on algebraic parametric estimation technics
is proposed by Mboup et al. (2007): a truncated Taylor
expansion and calculations in operational domain are used
to obtain the approximations of the finite order derivatives
of a noisy signal. In Liu et al. (2009), the error analysis for
such a differentiator is done.

The objective of the paper is to apply some differentiation
approaches for the velocity and acceleration estimations
of a pneumatic system. Four methods are considered here.
Two of them are based on classical approaches: one is
based on the backward-difference formula, the other is
based on a three-point formula. The third differentiator is
developed from results of Mboup et al. (2007) by using an
algebraic approach. Finally, the higher-order sliding mode
differentiator proposed by Levant (2003) is considered.
The paper is organized as follows. In the second section,
numerical differentiation methods are presented. The dif-
ferentiator based on high order sliding mode is exposed
in the third section. In the fourth one, the experimental
set-up of the pneumatic system is described. Furthermore,
experimental results of velocity and acceleration estima-
tions are presented and a comparison between the four
approaches is made with different working conditions.

2. NUMERICAL DIFFERENTIATION

2.1 Classical approach

The principle of the classical numerical differentiation
method presented in this section is to estimate the time
derivative of a function f(t) by calculating the derivative of
an interpolating polynomial that fits f(t) over an interval
I.
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The next theorem establishes a formula to approximate
f ′(t0) from the sampling points at instants t−j , . . . , t0, . . . , tk
(denote I = [t−j , tk]).

Theorem 1. (Burden and Faires (2011)) Let n = j+k and
f(t) ∈ Cn+1(I). Then, the first order derivative at t = t0,
f ′(t0) is given by the following (n+ 1)-point formula

f ′(t0) =

k∑

i=−j

f(ti)L
′
n,i(t0) +

f(n+1)(ξ)

(n+ 1)!

k∏

i=−j,i6=0

(t0 − ti) , (1)

where ξ ∈ I is an unknown instant and the Lagrange
polynomial Ln,i associated with t−j, . . . , tk, is defined, for
i = −j, . . . , k by

Ln,i(t) =

k∏

l=−j,l6=i

t− tl
ti − tl

. (2)

Proof. By the Lagrange interpolation theorem, for all
t ∈ I, there exists ξ ∈ I such that the following equation
holds

f(t) =

k∑

i=−j

f(ti)Ln,i(t) +
(t − t−j) . . . (t − tk)

(n+ 1)!
f(n+1)(ξ) . (3)

Then, the (n + 1)-point differentiation formula can be
obtained by differentiating both sides of (3) at t = t0.

Remark 1.

• With two sampling points, i.e. j = −1 and k = 0, one
obtains the classical backward-difference formula

f ′(t0) =
f(t0)− f(t0 − h)

h
+

h

2
f ′′(ξ) (4)

where h = t0 − t−1 represents the sampling period.
The term h

2 f
′′(ξ) which is proportional to the sam-

pling period h, gives the approximation accuracy.
• In order to improve the accuracy, more sampling
points are considered. Assume now that j = −2,k = 0
and the sampling period is uniform (i.e. t0 − t−1 =
t−1−t−2 = h). Then, one gets the three-point formula

f ′(t0) =
3f(t0)− 4f(t0 − h) + f(t0 − 2h)

2h
+

h2

3
f(3)(ξ) .

(5)
In this expression, the accuracy is proportional to h2.
Since the sampling period h is generally smaller than
1s, one gets a better accuracy.

Note that the smaller h is, the better accuracy one gets.
However, in the case of a noisy signal f(t), the differentia-
tion becomes more sensitive to this noise. From a practical
point of view, in controlled systems, the sampling period
should be tuned to satisfy the control law. So as to improve
these differentiators, one adds a parameter H = nh where
n is a positive integer. From expressions (4)-(5), one thus
deduces two formulations for the estimate of the first
derivative f̂ ′(t) of a signal f at current time t.

f̂ ′(t) =
f(t)− f(t−H)

H
(6)

and

f̂ ′(t) =
3f(t)− 4f(t−H) + f(t− 2H)

2H
. (7)

Expressions (6)-(7) will be experimentally tested on the
pneumatic system (Section 4), in order to estimate the
velocity and the acceleration.

2.2 Algebraic approach

An alternative approach to estimate the derivatives of a
(possibly noisy) signal is proposed by Mboup et al. (2007).
It is based on Taylor expansion and Laplace transform and
provides the advantage of simultaneously getting estimates
of the higher order derivatives of the signal. Next theorem
presents this differentiator.

Theorem 2. (Mboup et al. (2007)) Let N be a positive
integer. Assume that y(t) = f(t) + n(t) is a noisy signal
defined on [0,+∞], which consists of a basic signal f(t)
and a noise n(t).
Then, the estimates of the i-th order time derivatives

f̂ (i)(0), i = 0, . . . , N of f(t) at t = 0 are given by the
following general expression

P (T )




f̂(0)

f̂ ′(0)
...

f̂ (N)(0)


 =

∫ T

0

Q(τ)y(τ)dτ (8)

where T is the size of the estimation window. The nonzero
elements of the triangular matrix P (T ) are given, for
i = 0, . . . , N , j = 0, . . . , N − i, by

P (T )i,j =
(N − j)!

(N − i− j)!

T i+j+1

(i + j + 1)!
, (9)

and the elements of the integral term are

Q(τ)i =
i∑

l=0

(
i
l

)(
N + 1

l

)
(T − τ)l(−τ)i−l (10)

with i = 0, . . . , N .

Remark 2.

• A more general result is proved in Mboup et al. (2007)
with an additional parameter ν . For simplicity, we
assume here ν = N + 2 and we retain this choice
throughout the remainder of the paper.

• The expansion (8) is not a causal differentiator: it
requires the signal values y(t) for t > 0 in order to
reconstruct the derivatives at t = 0. It means that
the future signal values should be known to estimate
the derivative in the current time.

So as to estimate the derivatives at the current time t
from y(τ), τ < t, one adapts the differentiator (8) by the
following way.

Corollary 1. Consider the same assumptions as in Theo-

rem 2. The estimates f̂ (i)(t) for i = 0, . . . , N , are given by
the expression

P̃ (T )




f̂(t)

f̂ ′(t)
...

f̂ (N)(t)


 =

∫ T

0

Q(τ)y(t− τ)dτ (11)

with

P̃ (T )i,j = (−1)jP (T )i,j (12)

and P (T )i,j , Q(τ)i defined by (9) and (10).
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