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Abstract: In inertial human motion capture, a multitude of body segments are equipped
with inertial measurement units, consisting of 3D accelerometers, 3D gyroscopes and 3D
magnetometers. Relative position and orientation estimates can be obtained using the inertial
data together with a biomechanical model. In this work we present an optimization-based
solution to magnetometer-free inertial motion capture. It allows for natural inclusion of
biomechanical constraints, for handling of nonlinearities and for using all data in obtaining
an estimate. As a proof-of-concept we apply our algorithm to a lower body configuration,
illustrating that the estimates are drift-free and match the joint angles from an optical reference
system.
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1. INTRODUCTION

Human body motion capture is used for many applications
such as character animation, sports and biomechanical
analysis [Xsens Technologies B.V., 2013]. It focuses on
simultaneously estimating the relative position and orien-
tation of the different body segments (expressed in terms
of the joint angles) and estimating the absolute position
of the body. Motion capture is often performed using
either vision-based technologies [Moeslund et al., 2006] or
using inertial sensors. The main advantage of using inertial
sensors over vision-based technologies is that they are not
restricted in space and do not require line of sight visibility
[Welch and Foxlin, 2002]. In inertial human body motion
capture, the human body is equipped with inertial mea-
surement units (IMUs), consisting of 3D accelerometers,
3D gyroscopes and 3D magnetometers as shown in Fig. 1.
Each body segment’s position and orientation (pose) can
be estimated by integrating the gyroscope data and double
integrating the accelerometer data in time and combining
these integrated estimates with a biomechanical model.
Inertial sensors are successfully used for full body motion
capture in many applications [Xsens Technologies B.V.,
2013, Roetenberg et al., 2013, Kang et al., 2011, Yun and
Bachmann, 2006].

Inertial sensors inherently suffer from integration drift.
When using inertial sensors for orientation estimation
they are therefore generally combined with magnetome-
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Fig. 1. Examples of inertial motion capture. Upper left:
olympic and world champion speed skating Ireen
Wüst wearing an inertial motion capture suit with 17
inertial sensors. Upper right: graphical representation
of the estimated orientation and position of the body
segments. Lower left and right: experiment showing
that line of sight visibility is not necessary for inertial
motion capture.
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ters. Magnetometer measurements, however, are known
to cause problems in motion capture applications since
the magnetic field measured at the different sensor lo-
cations is typically different [Luinge et al., 2007, Cooper
et al., 2009, Favre et al., 2008]. Including information from
biomechanical constraints, i.e. information about the body
segments being rigidly connected, can eliminate the need
of using magnetometer measurements. Incorporating these
constraints, the sensor’s relative position and orientation
become observable as long as the subject is not standing
completely still [Hol, 2011]. Estimating joint angles using
a pair of inertial sensors, where each sensor estimates its
own orientation using an extended Kalman filter (EKF)
[Yuan and Chen, 2013] is therefore computationally cheap,
but valuable information from biomechanical constraints
is lost. Existing approaches therefore include the biome-
chanical constraints like for instance in Luinge et al. [2007]
where an EKF is run using only the accelerometer and
gyroscope measurements and a least-squares filter is added
to incorporate the biomechanical constraints.

To allow for natural inclusion of biomechanical con-
straints, we introduce a new optimization-based approach
for inertial motion capture. Compared to filtering ap-
proaches, optimization-based approaches are computa-
tionally expensive. Recent developments in both compu-
tational power and in available algorithms have, however,
opened up possibilities for solving large-scale problems
efficiently and even in real-time [Mattingley and Boyd,
2010]. Using an optimization formulation of the problem,
a smoothing estimate can be obtained and nonlinearities
can be handled. It also opens up possibilities for simulta-
neously estimating calibration parameters and for incor-
porating non-Gaussian noise.

The paper is organized as follows. After introducing the
problem formulation in Section 2, in Section 3 we will
introduce the biomechanical model, discussing the rele-
vant coordinate frames, variables and biomechanical con-
straints. In Section 4 we will subsequently introduce the
dynamic and sensor models. In Section 6 we will discuss
experimental results, focusing on a subproblem, namely a
lower body configuration consisting of 7 sensors, assuming
a known calibration and not including any position aiding.
These experiments are intended to serve as a proof-of-
concept. A more in-depth analysis including a comparison
with other methods is planned for future work.

Note that using inertial sensors and biomechanical con-
straints only, the absolute position is not observable, i.e.
any translation of the body’s position estimates will lead
to an equally valid solution of the estimation problem.
For example in the case of the speed skater in Fig. 1, the
estimated pose of the speed skater will resemble the “true”
motion, but the exact location on the ice rink is not observ-
able. This unobservability typically results in a drift of the
body’s absolute position over time. Because of this, it is
not possible to compare our position estimates with those
of the optical reference system and for now we focus on
analysis of the joint angles. To estimate absolute position
it is necessary to include e.g. GPS, ultra-wideband [Hol,
2011] or zero velocity updates when the foot is at stand
still [Callmer, 2013, Woodman, 2010] and this is planned
for future work.

2. PROBLEM FORMULATION

The use of inertial sensors for human body motion capture
requires inertial sensors to be placed on different body
segments. The knowledge about the placement of the
sensors on the body segments and the body segments’
connections to each other by joints can be incorporated
using a biomechanical model.

The problem of estimating the relative position and
orientation of each body segment is formulated as a
constrained estimation problem. Given N measurements
y1:N = {y1, . . . , yN}, a point estimate of the variables z can
be obtained as a constrained maximum a posteriori (MAP)
estimate, maximizing the posterior density function

max
z

p(z | y1:N )

s.t. ce(z) = 0,
(1)

where ce(z) represents the equality constraints. In our
problem, z consists of both static parameters θ and
time-varying variables x1:N . Using this together with the
Markov property of the time-varying variables and the fact
that the logarithm is a monotonic function, we can rewrite
(1) as

min
z={x1:N ,θ}

− log p(x1 | y1)− log p(θ)︸ ︷︷ ︸
initialization

−
N∑
t=2

log p(xt | xt−1, θ)︸ ︷︷ ︸
dynamic model

−
N∑
t=1

log p(yt | xt, θ)︸ ︷︷ ︸
biomechanical/sensor model

s.t. cbio(z) = 0. (2)

Obtaining the MAP estimate thus amounts to solving a
constrained optimization problem where the constraints
cbio(z) originate from a biomechanical model. The cost
function consists of different parts related to the initializa-
tion of the variables, a dynamic model for the time-varying
states and a biomechanical and sensor model. More details
about the variables, the different parts of the cost function
and the constraints are provided in Sections 3 and 4.

The optimization problem (2) is solved using an infeasible
start Gauss-Newton method [Boyd and Vandenberghe,
2004]. The number of variables in the problem will become
large already for short experiments and a small number of
segments. The problem (2) can, however, still be solved
efficiently due to its inherent sparseness.

3. BIOMECHANICAL MODEL

A biomechanical model represents the human body as
consisting of body segments connected by joints. In the
example application in Fig. 1 the body is modeled as
consisting of 23 segments, whereas Fig. 2 illustrates two
of these body segments. These can be thought of as the
upper and lower leg, each with a sensor attached to it.
The main purpose of Fig. 2 is to introduce the different
coordinate frames, variables and calibration parameters.
These definitions can straightforwardly be extended to any
sensor and any body segment. The relevant coordinate
frames are:

The local coordinate frame L aligned with the local
gravity vector, with the z-axis pointing up. The
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