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Abstract: In this work, the problem of state estimation for nonlinear continuous-time systems
from discrete data is tackled in a bounded error context. One assumes that all poorly-known
system variables belong to a bounded set with known bounds. Then, a self-triggered algorithm
is proposed to improve the performance of the classical set-membership state estimator based
on the prediction-correction procedures. In order to cope with pessimism propagation linked to
the bounding methods, this algorithm triggers the correction step whenever the size of a part of
the estimated state enclosure becomes greater than a time-converging threshold a priori defined
by the user. The effectiveness of the proposed self-triggered algorithm is illustrated through
numerical simulations.
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1. INTRODUCTION

State estimation is an important field of control system
theory (Luenberger [1971]),(Isidori [1995]). As a matter of
fact, several advanced control and diagnosis approaches
are developed under the assumption that the state vec-
tor of the continuous-time system is available online. To
satisfy this requirement, software sensors called observers
are developed to estimate in real-time the state vector
(Luenberger [1971]). For example, for linear continuous-
time systems one can use the standard Luenberger ob-
server (Luenberger [1971]) or the Kalman filter (Kalman
[1960]). Differently, for nonlinear systems, there are differ-
ent approaches to design nonlinear observers. For instance,
one can cite the extended Luenberger observer (Sorenson
[1985]), the extended Kalman filter (Misawa and Hedrick
[1989]), the high gain observer (Gauthier et al. [1992]) or
the sliding mode observer (Drakunov [1983], Slotine et al.
[1986]. . . ). All these observer design approaches assume
that the model of the real system is perfectly known
and the measurements are available in continuous-time.
In practice, these assumptions are problematic, especially
when dealing with biological or biotechnological systems,
because the system parameters are poorly-known and the
measurements are generally done in discrete time.

To circumvent this problem, prediction-correction set-
membership state estimators are developed during these
last years (Jaulin [2002], Räıssi et al. [2004], Goffaux et al.
[2009], Meslem et al. [2010a]). This kind of estimators
are designed in the unknown but bounded error context
(Milanese et al. [1996]). They estimate from discrete data
an accurate enclosure of the state flow generated by an
uncertain system, where all the uncertain variables are
represented by boxes (interval vectors) (Moore [1966],
Jaulin et al. [2001]). The main contribution of this work

consists in endowing the set-membership state estimator
by a self-triggered algorithm in order to apply efficiently
the correction procedure. In fact, with this algorithm one
can master the propagation of pessimism generated by the
bounding methods (Kieffer and Walter [2006], Ramdani
et al. [2009], Ramdani et al. [2010]). This algorithm is
inspired from the event-triggered control strategy applied
to continuous-time systems (Meslem and Prieur [2013]).

Note that, to the best of our knowledge, the convergence
issue of the state estimation error in the bounded error
context is still not well investigated, in particular when ap-
plying the prediction-correction algorithm (Jaulin [2002],
Räıssi et al. [2004], Goffaux et al. [2009], Meslem et al.
[2010a]). In this work, due to this self-triggered algorithm,
the proof of the convergence of the state estimation error
is provided under some assumptions. This convergence
analysis shows more the importance of our findings.

This paper is organized as follows. In Section 2, basic
notions about interval computations are introduced. Then,
the core idea of the classical prediction-correction state
estimator is recalled in Section 3. The main results of this
work are stated and proved in Section 4. An illustrative
example is given in Section 5 with several simulation
tests. Also, a comparative study with the results obtained
by an interval observer is presented and commented in
this section. Finally, some concluding remarks and future
works are discussed.

2. PRELIMINARY NOTIONS ABOUT INTERVAL
COMPUTATION

Interval analysis was initially developed to account for
the quantification errors introduced by the floating point
representation of real numbers with computers and was ex-
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tended to reliable computations (Moore [1966], Neumaier
[1990]). Denote by [x] = [x, x] a real interval which is a
connected and closed subset of R where the real numbers
x and x are respectively the lower and the upper bound of
[x]. So, the set of all real intervals of R is denoted by IR.
Over IR an interval arithmetic was built by an extension
of the real arithmetic operations. That means, for each
operator ◦ ∈ {+,−,×,÷} and for each couple of intervals
[x] and [y] one defines

[x] ◦ [y] = {a ◦ b | a ∈ [x], b ∈ [y]} (1)

The width of an interval [x] is defined by w([x]) = x−x. As
well, an interval vector or box denoted by [x] is a subset of
Rn defined as the Cartesian product of n closed intervals.
The set of all interval vectors of order n will be denoted
by IRn. The width of an interval vector of dimension n is
defined by

w([x]) = max
1≤i≤n

w([xi])

Likewise, we define the vector width of an interval vector
by

wv

(
[x]
)

=
(
w([x1]), w([x2]), . . . , w([xn])

)T
That is, the components of the real vector wv are the
widths of each component of the interval vector [x].

Now, one can describe uncertain parameters by an upper
and lower bound, then rigorous bounds on the range of
a real function of these parameters are computed using
interval arithmetic. Consider the real function f : Rn → R.
The range of this function over an interval vector [x] is
given by:

f([x]) = {f(a) | a ∈ [x]} (2)
Then, one calls an inclusion function denoted by [f ] for
the real function f an interval application that satisfies
the following inclusion

∀[x] ∈ IRn, f([x]) ⊂ [f ]([x]) (3)

In practice, the simplest manner to obtain an inclusion
function [f ] for real function f consists in replacing each
occurrence of a real variable by the corresponding interval
and each standard function by its interval counterpart.
The resulting function is called the natural inclusion
function and the tightness of the enclosure provided by
[f ] depends on the formal expression of f . In fact, it is
well known if the same variable xi has many occurrences
in the mathematical expression of f , the dependence effect
(Moore [1966], Jaulin et al. [2001]) will induce pessimism
while computing an enclosure of the range of the real
function. Hence, formal pre-processing of the function
expression is advisable in order to minimize the number
of variable occurrences.

In the sequel, we will show how the joint use of interval
computation and the bounding methods for computing
rigorous bounds on the reachable set of uncertain nonlinear
systems, allows to solve in guaranteed way the state
estimation problem for uncertain nonlinear systems from
discrete data.

3. SET-MEMBERSHIP STATE ESTIMATION

3.1 Prediction-Correction state estimator

In this section, we recall briefly the core idea of the
classical prediction-correction state estimator of nonlinear
continuous-time systems, which are described by

{
ẋ = f(x,p,u)
y = g(x,p,u)

(4)

where x ∈ Rn is the state vector to be estimated from
discrete data. The vectors u ∈ Rm and y ∈ Rp stand
for respectively the input and the output of the system.
The vector field f and the output model g can be linear or
nonlinear functions of the state and input with appropriate
dimensions. The initial state x0 and the parameter vector
p ∈ Rnp are assumed unknown but bounded with known
bounds. That means,

x0 ∈ [x0,x0], p ∈ [p,p]

where x0, x0, p and p are respectively the known upper
and lower bound of the initial state and the parameter
vector p. Experimental data yj are collected at discrete
times tj , j ∈ {1, . . . , N}. And the feasible domain for the
output values at each time tj is given by

[yj ] = yj + [ej ] (5)

where the box [ej ] denotes the feasible domain for output
error at time tj , which includes both deterministic and
random error.

The prediction stage (Pred): In this context the pre-
diction procedure has to compute an outer enclosure of
all possible state trajectories generated by the uncertain
system (4) between two measurement time instants tj
and tj+1. To accomplish this task, one can use either the
validated methods for initial value problems for ordinary
differential equations (Rihm [1994], Nedialkov et al. [2001])
based on interval analysis or the hybrid bounding methods
(Ramdani et al. [2009], Ramdani et al. [2010]) based on the
comparison theorems of differential inequalities (Müller
[1926], Marcelli and Rubbioni [1997], Smith [1995]). In
this work, the bounding methods are used to carry out
the prediction stage. So, an outer enclosure of the state
trajectories generated by (4) over a time interval [tj , tj+1]
is obtained by integrating the following bounding system{

ẋ = f(x,x,p,p,u), x(tj) = xj ,
ẋ = f(x,x,p,p,u), x(tj) = xj ,

(6)

where the vector functions f , f are built in order to frame
the field vector f for all x ∈ [x,x] and for all p ∈ [p,p].
To get more explanations about the construction of the
bounding system (6) the reader can refer to Ramdani et al.
[2009], Ramdani et al. [2010] and references therein. Thus,
one can claim that all possible state trajectories generated
by the uncertain system (4) are framed by the solution of
the deterministic system (6). That means,

x(tj) ∈ [x(tj),x(tj)],p ∈ [p,p]
⇒ ∀t ∈ [tj , tj+1],x(t) ∈ [x(t),x(t)]

(7)

To sum up, the prediction stage computes an outer enclo-
sure, here denoted by [x(t)]p, of the all state trajectories
generated by the system (4) on the period [tj , tj+1].

The correction stage (Corr): At each measurement time
instant tj , an other outer enclosure of the state vector
denoted by [x(tj)]

inv is computed now by solving the
following set inversion problem

[x(tj)]
inv = {x ∈ Rn | g(x,p,u) ∈ [y(tj)]} (8)

Then, the inconsistent state vectors belonging to the two
outer enclosures are discarded as follows

[x(tj)]
c = [x(tj)]

inv ∩ [x(tj)]
p (9)
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