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Abstract: Magnetometers and inertial sensors (accelerometers and gyroscopes) are widely used
to estimate 3D orientation. For the orientation estimates to be accurate, the sensor axes need to
be aligned and the magnetometer needs to be calibrated for sensor errors and for the presence
of magnetic disturbances. In this work we use a grey-box system identification approach to
compute maximum likelihood estimates of the calibration parameters. An experiment where
the magnetometer data is highly disturbed shows that the algorithm works well on real
data, providing good calibration results and improved heading estimates. We also provide
an identifiability analysis to understand how much rotation is needed to be able to solve the

calibration problem.
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1. INTRODUCTION

Inertial sensors (3D accelerometers and 3D gyroscopes)
in combination with 3D magnetometers are in many ap-
plications used to obtain orientation estimates using an
extended Kalman filter (EKF). When the sensor is subject
to low accelerations, the accelerometer measurements are
dominated by the gravity component from which it is
possible to deduce information about the inclination. The
magnetometer measures the local magnetic field vector
and its horizontal component can be used to obtain head-
ing information. The orientation estimates are only accu-
rate when the sensor axes of the inertial sensors and the
magnetometers are aligned and when the magnetometer is
properly calibrated. This calibration consists of two parts.
First, the magnetometer needs to be calibrated for errors
inherent in the sensor, for instance non-orthogonality of
the magnetometer sensor axes. Second, it needs to be cal-
ibrated for the presence of magnetic disturbances. These
magnetic disturbances are frequently present due to the
mounting of a magnetometer and cause a constant dis-
turbance that needs to be calibrated for. When using a
magnetometer it is therefore always advisable to calibrate
it before use.

Our main contribution is a new practical algorithm for
calibration of a magnetometer when we also have access
to measurements from inertial sensors rigidly attached to
the magnetometer. The algorithm implements a maximum
likelihood (ML) estimator to find the calibration parame-
ters. These parameters account for magnetometer sensors
errors, the presence of constant magnetic disturbances
caused by mounting the magnetometer close to magnetic
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Fig. 1. Calibration results for experimental data where the
original magnetometer data is plotted in red and the
calibrated magnetometer data is plotted in blue.

objects and misalignments between the magnetometer and
the inertial sensors. An illustration of the results obtained
from calibrating a magnetometer using the proposed algo-
rithm is available in Fig. 1.

In many practical applications, mounting the magnetome-
ter onto for instance a car or a boat severely limits the
rotational freedom of the sensor. A secondary contribution
of this work is a quantification of how much rotation is
needed to be able to solve the calibration problem. This
is done via an identifiability analysis, deriving how much
rotation is needed in the case of perfect measurements.
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Many recent magnetometer calibration approaches are
based on ellipse fitting. These calibration algorithms use
the fact that when rotating a magnetometer, its measure-
ments should lie on a sphere if the magnetometer measures
a constant local magnetic field vector, i.e. the norm of the
magnetic field should be constant. The presence of mag-
netic disturbances or magnetometer sensor errors leads to
an ellipsoid of data instead. Many calibration algorithms
are used to obtain improved orientation estimates. Hence,
the radius of the sphere, i.e. the actual magnitude of
the local magnetic field vector, is irrelevant and we can
without loss of generality assume that its norm is equal
to 1. The calibration has therefore been successful when
the calibrated measurements can be seen to lie on a (unit)
sphere (recall Fig. 1). The problem of fitting an ellipsoid
of data to a sphere was considered for example by Gander
et al. [1994]. As shown by Markovsky et al. [2004] the
ordinary least squares estimate is inconsistent when using
measurements corrupted by noise. Different calibration
approaches have been developed to overcome this problem,
see e.g. Gebre-Egziabher et al. [2006], Renaudin et al.
[2010].

An ellipse fitting method can only solve the calibration
up to an unknown rotation. Combining the magnetometer
with inertial sensors requires the sensor axes to be aligned,
i.e. the sphere needs to be oriented such that the mag-
netometer sensor axes are aligned with the inertial sensor
axes. A few recent approaches add a second step to the cal-
ibration procedure to estimate the misalignment between
the magnetometer and the inertial sensor axes [Vasconce-
los et al., 2011, Li and Li, 2012, Salehi et al., 2012, Bonnet
et al., 2009]. They first use an ellipse fitting approach
and determine the misalignment between the magnetome-
ter and the inertial sensor axes in a second step. These
approaches generally use the accelerometer measurements
for estimating the misalignment, but discard the gyroscope
measurements. Troni and Whitcomb [2013] focus on using
the gyroscope measurements to obtain an estimate of the
misalignment. Our work follows a similar approach, but
makes use of both the gyroscope and the accelerometer
measurements and aims at obtaining a maximum likeli-
hood estimate by combining both steps into a nonlinear
optimization problem.

2. PROBLEM FORMULATION

Our solution to the magnetometer calibration problem
makes use of a nonlinear state space model describing the
sensor’s orientation ¢; and its measurements,

Gr+1 = fir(qe, ut, 0) + Blgr)ve(0), (1a)
Y = he(qe, 0) + e (0). (1b)
Here, g; denotes the state variable representing the sensor
orientation encoded using a unit quaternion. Furthermore,
u; and y; denote observed input and output variables,
respectively. The dynamics is denoted by f;(-) and the
measurement model is denoted by hy(+). Finally, v; and e;
represent mutually independent i.i.d. process and measure-
ment noise, respectively and B(g:) is a matrix describing
how the noise v; affects the state ¢;. The model is intro-
duced in detail in Section 3.

The calibration problem is formulated as a maximum
likelihood grey-box system identification problem. Hence,
based on N measurements of the observed input uy.y
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{u1,...,uy} and output yi.n {y1,...,yn} variables,
find the parameters 6 that maximize the likelihood func-
tion,

’H‘ML

= argmax py(y1.n ), (2)
0cO

where © C R™. Using conditional probabilities and the
fact that the logarithm is a monotonic function we have
the following equivalent formulation of (2),

N

— argmin —» _logpg(ys | y1.4-1),
0o ]

é\ML

(3)

where we have used the convention that yi.o £ (). The
ML estimator (3) enjoys well-understood theoretical prop-
erties including strong consistency, asymptotic normality,
and asymptotic efficiency [Ljung, 1999]. The state space
model (1) is nonlinear, implying that there is no closed
form solution available for the one step ahead predictor
po(y+ | Y1:—1). This can be handled using sequential
Monte Carlo methods (e.g. particle filters and particle
smoothers), see e.g. Schon et al. [2011], Lindsten and
Schén [2013]. However, for the magnetometer calibration
problem under study it is sufficient to make use of a more
pragmatic approach; we simply approximate the one step
ahead predictor using an extended Kalman filter (EKF).
The result is

o (Yt | Y1:4—1) ~N (yt | §t|t—1(9), St(e)) ) (4)

where N (y; | G¢¢—1(6), S¢(6)) denotes the probability den-
sity function for the Gaussian random variable y; with
mean value 7;—1(¢) and covariance S;(0). Here, S;(0) is
the residual covariance from the EKF [Gustafsson, 2012].
Inserting (4) into (3) results in the following optimization
problem,

1
min —

N
i 5 32 10 = s O ) + 108 et 510, (6)

which we can solve for the unknown parameters 6. The
problem (5) is non-convex, implying that a good initial
value for 6 is required.

3. MODELS
3.1 Dynamic model

We model the orientation ¢; as the sensor’s orientation
from the body frame b to the navigation frame n at time ¢,
expressed as ¢i*. The body frame b is the coordinate frame
of the inertial sensor with its origin in the center of the
accelerometer triad and its axes aligned with the inertial
sensor axes. The navigation frame n is aligned with the
earth gravity and the local magnetic field vector. The
dynamic model of the orientation (1a) takes the gyroscope
measurements as an input, which are modeled as

Yw,t = Wt + 0w + Ve, ts (6)
where w; denotes the angular velocity, é,, denotes the gyro-
scope bias and v, ; ~ N (0, X,,). The dynamic equation for
the orientation states is then given by [Gustafsson, 2012]

031 = (Za + FLWwp = 00)) 6" + TL(G" v (7)

Here, Z, denotes a 4 x 4 identity matrix, 7" denotes the
sampling time, the matrices L(¢'™) and L(y,; — 0.,) are
given by
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