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A B S T R A C T

Accurate fitting of measured current-voltage [I V( )] data is crucial to the correct analysis and understanding of
metal-insulator–metal (MIM) diodes, especially for optical rectennas. With the commonly used polynomial fit-
ting of the I V( ) data, the order of the fit can drastically affect the diode performance metrics such as resistance,
responsivity, and asymmetry. Additionally, the resulting fitting coefficients provide no useful parameters. An
exponential-based equation can fit the I V( ) data well, can avoid artifacts from the choice of order of the
polynomial, and allows for the accurate calculation of diode performance metrics directly from the fitting
coefficients. Connecting the performance metrics to fitting coefficients shows a correspondence between zero-
bias responsivity and asymmetry at any given voltage.

1. Introduction

High-speed nonlinear diodes, such as metal-insulator–metal (MIM)
diodes, have been increasingly investigated for use in rectennas for
optical detection and energy harvesting [1–7]. Optical rectennas are
antenna-coupled diode rectifiers that absorb high-frequency electro-
magnetic radiation and convert it to a DC signal. Measuring the DC
I V( ) characteristic of fabricated MIM diodes is the first step in ex-
perimentally analyzing and testing an optical rectenna. From the DC
I V( ) characteristics, certain performance metrics, such as differential
resistance, responsivity, and asymmetry, given in (1)–(3) respectively,
can be extracted. These metrics describe properties that are central in
assessing a diode’s suitability for use in an optical rectenna.
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For an efficient rectenna, a high coupling efficiency between the
MIM diode and the antenna is required. The antenna impedance is ty-
pically on the order of 100 ohms, and for efficient power transfer the
diode resistance should match it [8,9]. For this reason, only diodes that
have a relatively low resistance are of interest, despite the higher
asymmetry and nonlinearity seen in some high-resistance diodes

[10–13]. A high diode responsivity, which is a measure of rectified DC
voltage or current as a function of input power, and a large asymmetry,
which is the ratio of forward to reverse current, are required for effi-
cient rectification [9]. Since optical rectennas usually operate at vol-
tages close to zero [14], we use the zero-bias resistance, =R R (0)d0 , and
the zero-bias responsivity, =β β (0)0 , when analyzing our diodes. Using
zero-bias values simplifies the differential resistance and responsivity
curves into single quantitative metrics.

While R V( )d and β V( ) can be calculated directly from I V( ) data
using central difference approximation derivatives, a problem often
arises when noise in the experimental data gets amplified by the deri-
vatives. To overcome this noise amplification, it is necessary to use
some sort of fitting or smoothing. A polynomial fit using least square
regression is an attractive option because it is easy to differentiate and
integrate, and a polynomial of high enough order can fit any curve to an
arbitrarily high degree of accuracy. This arbitrarily high degree of fit
accuracy, however, can give misleading results. Runge’s function is one
well-established example [15,16]. Despite the known problems with
polynomial fitting, it has become common practice to fit MIM I V( ) data
with a polynomial when analyzing MIM diodes [17–26]. In this paper
we expose the shortcomings of the polynomial fit for MIM diodes
through the analysis of a double insulator MIM diodes. We demonstrate
that an alternative fitting procedure can overcome these shortcomings.

The first diode we examine, MIM-1 ( ≅R (0)d 16 kΩ), is a Co-CoOx-
TiO2-Ti double insulator MIM diode fabricated as described in Herner
[26]. While we focus on double insulator MIM diodes, the concepts
discussed are appropriate for single insulator MIM diodes as well. We fit
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the measured I V( ) data for MIM-1 with 5 ,7th th, and 9th order poly-
nomials. These fits generate smooth responsivity curves shown in
Fig. 1(a). However, these responsivity curves vary greatly between the
different fit orders, which is evidence that these results are misleading.
The asymmetry curves in Fig. 1(b) also show substantial variation, not
only from each other, but from the data. Unlike R V( )d or β V( ), the
asymmetry does not rely on I V( ) derivatives, and so it can be calculated
directly from the interpolated I V( ) data. The interpolation is necessary
to ensure that the currents at both the positive and negative voltage are
taken at a uniform voltage distance from =V 0. Even though the
asymmetry can be calculated from the data directly, the noise of the
measurement is still clearly evident, which again demonstrates the need
for quality fitting. These curves show that the polynomial fits do a
particularly poor job of estimating the asymmetry at low voltages due
to the polynomials ability to not pass through the origin. Because of
these erroneous results, we developed an alternative, more robust fit-
ting model.

2. Calculating performance metrics from the exponential model

The electron tunneling responsible for the rectification in MIM
diodes is fundamentally an exponential process [27]. To overcome
limitations of the polynomial fit, we propose an alternative approach
using least square regression to fit an equation based on exponentials.
This fit facilitates an understanding of how well the diode will operate
in a circuit (e.g., in a rectenna,) and provides a useful basis for diode
improvement. The proposed exponential-based fit is:
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In practice, we use the first version of the equation to perform the fit
as it is a convenient MATLAB built-in fitting function, ‘exp2’. After the
fit is complete, we check that the variation between a and c is less than
1% and set I0 to the average of a and c and force the sign conventions in
the second version of the equation. In this equation, parameter b
strongly influences the I V( ) at positive voltages while parameter d af-
fects the curve at negative voltages. The parameter I0 scales the curve,
thus modifying the diode resistance. The first indication that (4) is an
appropriate form for a diode fit is that when =d 0 and =b nv

1
t
, where n

is an ideality factor and vt is the thermal voltage, the equation simplifies
to the Shockley diode equation, which describes an ideal semiconductor
diode [28]. Simmons proposed a similar exponential form for a trape-
zoidal high-barrier diode [27]. We note that Simmon’s equation does
not describe our MIM diodes accurately because for low-barrier height
MIM diodes at intermediate voltages (100mV ⩽ ⩽V 300mV), the equa-
tion simplifies to a symmetric I V( ) formula and overestimates the
tunnel current [29]. In contrast to the polynomial fits, when the ex-
ponential fit is used the resistance, responsivity, and asymmetry are
directly determined by the fitting coefficients in a physically mean-
ingful way. In this paper, we calculate resistance, responsivity and

asymmetry for two MIM diodes of different material sets that were
fabricated by different techniques. These different diodes show slightly
different I V( ) curvature and fitting techniques. We demonstrate that
the exponential fitting is a superior alternative to the polynomial fit.

2.1. Resistance

To effectively match the diode resistance, Rd, to the antenna, it is
necessary to understand the relationship between the diode I V( ) and
R V( )d . Substituting the exponential equation for the diode I V( ), (4),
into the diode differential resistance equation, (1), results in:
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From (5), we can calculate the zero-bias differential resistance R0.
At V = 0, the exponential terms vanish and R0 can be expressed simply
as:
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2.2. Responsivity

Since responsivity provides the connection between optical input
power and DC output, it is useful to understand the relationship be-
tween the I V( ) and β V( ). Substituting the exponential I V( ) equation,
(4), into (2), we obtain the voltage-dependent responsivity:

⎜ ⎟= ⎛
⎝

− −
+ −

⎞
⎠

β V
b bV d dV
b bV d dV

( ) 1
2

exp( ) exp( )
exp( ) exp( )

2 2

(7)

Just as with resistance, the first parameter of interest is the zero-bias
responsivity, since we are often interested in rectenna operation at or
near zero bias. The responsivity at zero bias is:
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Zero-bias responsivity is dependent only on the two coefficients in
the arguments of the exponentials in (4). From (4) we can see that at
large voltage magnitudes, one exponential dominates the I V( ) equa-
tion. Similarly, from (7), we see that at large positive voltages β V( )
asymptotically approaches b1

2 and at large negative voltages β V( ) ap-

proaches − d1
2 .

2.3. Asymmetry

The asymmetry gives insight into a diode’s ability to efficiently
rectify. Again, substituting (4) into (3) and simplifying gives the voltage
dependent asymmetry:

(a) (b)

Fig. 1. Effects of polynomial fitting order on a moderate-resistance diode (MIM-1) (a) responsivity as a function of voltage, (b) asymmetry as a function of voltage.
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