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A B S T R A C T

Aiming to estimate the degree of damage influences on a building model, this paper proposes to adopt the
extreme-point symmetric mode decomposition (ESMD) method to conduct a stability analysis in the progressive
collapse of a building model. As a representative case, a five-story reinforced concrete frame-shear wall building
model with a destructible glass wall, is studied in detail. The input signals of key locations on the building model
are obtained by high-speed videogrammetry (HSV). First, the original complex response signal is decomposed
into a series of simple signals called intrinsic mode functions (IMFs) by a mode symmetric about the maxima and
minima points. Second, the instantaneous frequency of each IMF is obtained to perform a stability analysis by a
direct interpolation (DI) algorithm. Third, instantaneous energy is obtained to conduct a stress analysis for the
key locations of the building model. The results demonstrate that the proposed method has an ability to perform
a stability analysis in the progressive collapse of a building model efficiently.

1. Introduction

Structural progressive collapse occurs when a primary structural
element fails, resulting in the failure of adjoining structural elements,
which in turn causes further structural failures [1]. Structural pro-
gressive collapse inevitably leads to a large number of serious loss of
lives and property, which has a negative social impact [2,3]. Therefore,
aiming to avoid structural progressive collapse, before building a
structure, a corresponding building model of a certain scale should be
constructed to carry out progressive collapse experiments, with the goal
of acquiring the dynamic response signals of key locations by a sudden
removal of the primary structural components. Stability analysis from
the dynamic response signals has become one of the most interesting
research topics in structural health monitoring (SHM) area, and it can
be used to estimate the degree of damage influences on a building
model [4,5].

In general, a building model may exhibit time-varying system
properties under the sudden removal of primary structural components.
It is important to track these properties for structural stability analysis
based on the acquired non-stationary dynamic response signals [6]. At
present, the most commonly used method for structural stability ana-
lysis is time-frequency analysis (TFA), by which vibration-based non-

stationary dynamic response signals are analyzed [7]. The fast Fourier
transform (FFT) was the first TFA method for structural stability ana-
lysis, and it has been used in various types of building models [8].
However, FFT has two significant limitations. It cannot depict changes
in vibration-based frequency signal content over time, and it cannot be
used to monitor real structures subjected to dynamic excitations [9]. To
overcome the limitations of FFT, a short-time Fourier transform (STFT)
was produced for structural stability analysis by analyzing non-sta-
tionary or noisy signals [10]. The basic idea of STFT is to divide the
initial response signal into small time windows and represent variations
in signal frequency content over time by Fourier transforms of these
time segments [11]. However, there is a tradeoff between the size of a
time window and the frequency resolution, which cannot adequately
represent the dynamic transient behavior of the structure [12]. A wa-
velet transform (WT) represents a family of elementary functions by
wavelets, which can be dilated and shifted independently. Wavelets are
localized in both time and frequency [13]. WT has great potential to
detect sudden changes from dynamic response signals, and it has been
applied in the field of structural stability analysis [14,15]. However,
WT is still an adaptive-window Fourier method based on the principle
of linear superposition. It can handle nonstationary signals only for
linear systems by a priori knowledge, and also is limited by the size of
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the mother wavelet [16]. In conclusion, it is difficult for traditional
Fourier-based methods, such as STFT and WT, to process nonstationary
and nonlinear signals, such as the dynamic response signals acquired
from the progressive collapse of a building model in this study.

Aiming to extract the properties of nonstationary and transient
signals, Huang et al. proposed the Hilbert–Huang transform (HHT) as
an adaptive signal-processing technique with the capacity to analyze
nonlinear or nonstationary signals [16]. HHT consists of the two key
steps of empirical mode decomposition (EMD) method and Hilbert
spectral analysis. The EMD method decomposes any complicated time-
series data into a collection of band-limited quasi-stationary functions
called intrinsic mode functions (IMFs). Hilbert spectral analysis yields
meaningful instantaneous amplitude and frequency information from
nonlinear or nonstationary signals for each IMF [17]. With the ad-
vantage of requiring neither an a priori primary-function nor a preset
window-length, HHT has been applied to vibration signal analysis in
different fields, such as mechanical, biomedical, and earthquake en-
gineering [18,19]. However, HHT has some shortcomings when used
for structural stability analysis. First, the sifting time is difficult to de-
termine and the decomposed trend functions are too rough. Second, as
the unenviable IMFs, it may bring about misinterpretations of results in
low frequency regions. Third, Hilbert spectrum analysis is limited re-
garding the energy as a constant to be mapped into a series of fixed
frequency.

Recently, an innovative algorithm, extreme-point symmetric mode
decomposition (ESMD), has been proposed for TFA [20]. Rather than
constructing two outer envelopes for the sifting process of HHT by a
least-square method, ESMD is implemented by an optimal global mean
curve interpolated by the midpoints of the line segments connecting the
local maxima and minima points. This will reduce the difficulty in
determining the optimal sifting time. ESMD shows considerable po-
tential in the areas of information science, marine and atmospheric
sciences, economics and seismology [21–23].

Therefore, on the basis of three-dimensional (3D) time-series data
acquired by high-speed videogrammetry (HSV) method introduced in
Liu et al. [3], this paper further extends to adopt the ESMD method to
conduct a stability analysis in the progressive collapse of a building
model. The rest of this paper is organized as follows. The building
model is introduced in Section 2. Section 3 introduces the stability
analysis method. Section 4 describes the experimental results and
analysis, followed by our conclusion in Section 5.

2. Building model

In the study, a building model is a five-story reinforced concrete
frame-shear wall with a destructible glass wall at the bottom. Fig. 1
demonstrates a photo of the building model taken by a camera. The
purpose of the experiment is to obtain the dynamic response signals of
key locations on the building model by the sudden loss of the de-
structible glass wall, and to conduct a stability analysis of the pro-
gressive collapse of the building model. Fine aggregate concretes and
galvanized iron wires are used to construct the building model. The
glass wall is made from a kind of organic glass, with compressive
strength of 28 N/mm2 and thickness of 5mm. The floor live load is
2.0 kN/m2, and the size of the building model can be seen in Fig. 1.

3. Stability analysis method

3.1. Signal decomposition

Any one complicated response signal can generally be regarded as
being composed of multiple simple signals with their own inherent
natural frequency [24]. The purpose of signal decomposition is to de-
compose the original response signal into a series of simple signals, and
further seek the main sub-signal of the original response signal. The
acquired response signal of the progressive collapse of the building

model in this study is nonlinear. Therefore, ESMD is proposed to de-
compose the original response signal into a series of finite and small
IMFs together with an optimal adaptive global mean (AGM) curve,
which can determine the corresponding meaningful instantaneous fre-
quency of each IMF. The signal-decomposition procedure for a given
complicated response signal s t( ) is shown in Fig. 2.

Step 1: Midpoint seeking.

Find all the local maxima and minima points of the response signal
s t( ) and enumerate them as = ⋯E i n( 1,2, )i . Connect all the adjacent
extreme points Ei with line segments and enumerate their midpoints as

= ⋯ −M i n( 1,2, 1)i .

Step 2: Boundary processing.

The purpose of boundary processing is to determine boundary
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Fig. 1. A photo of the building model taken by a camera.

A given complicated response signal s(t)
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Fig. 2. Flowchart of signal decomposition by the ESMD method.
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