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Abstract: We study a networked state estimation problem for a linear system with multiple
sensors, each of which transmits its measurements to a central estimator via a lossy communi-
cation network for computing the minimum mean-square-error (MMSE) state estimate. Under
a general Markov packet loss process, we establish necessary and sufficient conditions for the
stability of the estimator for any diagonalizable system in the sense that the mean of the state
estimation error covariance matrix is uniformly bounded. For the second-order systems under
an i.i.d. packet loss model, the stability condition is expressed as a simple inequality in terms
of open-loop poles and the packet loss rate.
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1. INTRODUCTION

With the rapid development of the sensor network and
communication technologies, the problem of networked
state estimation has received significant attention in the
recent years [Sinopoli et al., 2004, Schenato et al., 2007,
Hespanha et al., 2007]. One of the major difficulties is due
to packet loss in transmitting the sensor measurements.
This work focuses on an estimation framework where
multiple sensors are deployed to observe a large linear
system and send their measurement to a remote estimator
through a lossy network. In particular, each sensor uses an
independent channel for communicating with the central
estimator where the minimum mean-square-error (MMSE)
state estimate is computed.

Under a single sensor case, the estimation framework was
initially studied in Sinopoli et al. [2004]. By treating the
received measurements as intermittent measurements, the
Kalman filter technique is applied to compute the net-
worked MMSE state estimate with single sensor [Sinopoli
et al., 2004]. However, the stability of the state estimator is
known to be seriously influenced by the packet loss model
and the algebraic structure of the system in a coupled and
complicated manner [Huang and Dey, 2007, You et al.,
2011, Mo and Sinopoli, 2010]. Strictly speaking, it is still
not well understood how they jointly affect the stability of
the networked MMSE state estimator.

Two frameworks for the networked state estimation are
proposed in the literature, by transmitting either the raw
measurements directly, or the state estimate instead. The
⋆ This work was in part supported by the National Natural Science
Foundation of China under grant NSFC 61304038.

former approach is easy to implement but the associated
stability condition is difficult to derive, whereas the latter
one yields simpler stability conditions [Schenato, 2008]
but adds the processing burden to the transmitters. The
latter one may not be possible when considering the
constraints of the hardware and power in sensor networks,
and tends to transmit more data through the network.
Under our distributed sensing setting, pre-computing the
state estimate in each sensor might not be sensible due
to the use of only partial state measurements. In Sun and
Deng [2004], each sensor locally computes a state estimate
and the central estimator aggregates these local estimates.
Such an estimate is typically not optimal, and requires the
stability of local estimators. This is an unnecessarily strong
assumption for the distributed setting. For these reasons,
we will adopt the former approach(each sensor transmits
its raw measurements to the estimator) in this paper.

To quantify the effect of packet loss, two channel mod-
els have been widely adopted: 1) the independent and
identically distributed (i.i.d.) model where the packet loss
process is modeled as an i.i.d. Bernoulli process [Sinopoli
et al., 2004]; 2) the Markovian model where the packet
process is described by a binary Markov chain [Huang
and Dey, 2007], which is inspired by the so-called Gilbert-
Elliott (GE) channel. Under the i.i.d. model, references
[Sinopoli et al., 2004, Mo and Sinopoli, 2010, Plarre and
Bullo, 2009, Mo and Sinopoli, 2008] focused on the stabil-
ity of the intermittent Kalman filter with only one sensor
transmitting its raw measurements, and there exists a
critical packet loss rate, above which the mean of the state
estimation error covariance matrix will diverge to infinity
[Sinopoli et al., 2004]. An upper bound and lower bound
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for the critical packet loss rate are also given in Sinopoli
et al. [2004]. For a general vector system, it is known to be
difficult to express the critical packet loss rate. Motivated
but also inspired by the limitation of Sinopoli et al. [2004],
the lower bound is shown to be tight in Plarre and Bul-
lo [2009] for the system with one-step observable, which
continues to hold for the so-called non-degenerate systems
[Mo and Sinopoli, 2010]. However, a counterexample was
found in You et al. [2011] that the critical packet loss rate
strictly lies between the lower and upper bounds. For the
GE packet loss model, the necessary and sufficient stability
condition for the second-order systems and certain classes
of higher-order systems are explicitly given in You et al.
[2011]. In Rohr et al. [2013], they studied a wider class of
Markovian network model.

In comparison, this paper studies the networked state es-
timation problem with multiple sensors. This is motivated
by many real-world scenarios where the system covers a
large spatial domain and distributed sensing is needed,
with each sensor measuring partial state information. The
stability analysis of the resulting networked MMSE esti-
mator is challenging, and has not been studied since the
system structure with multiple sensors is rather compli-
cated. Note that the approaches in Huang and Dey [2007],
You et al. [2011], Mo and Sinopoli [2010], Sun and Deng
[2004], Plarre and Bullo [2009], Mo and Sinopoli [2008]
are no longer applicable to this setting. We establish a
necessary and sufficient condition for the stability of the
state estimator for diagonalizable systems under multiple
sensors. An efficient algorithm is also designed to check
the condition. We demonstrate, through a second-order
system under the i.i.d. packet loss model, that the stability
condition reduces to a simple inequality. Thus, how the un-
stable open-loop poles and packet loss rates jointly affect
the stability of the MMSE estimator is clearly revealed.
From this perspective, our results substantially advance
the existing literature, which only consider the case with
a single sensor.

The rest of the paper is organized as follows. The problem
formulation is described and the MMSE estimate for the
system with multiple sensors over a lossy channel is derived
in Section 2. In Section 3, the stability condition for the
MMSE estimator of a diagonalizable system is given. For
second-order systems, stability conditions are given by a
simple inequality in Section 4. Concluding remarks are
drawn in Section 5.

2. PROBLEM FORMULATION

Consider a discrete-time stochastic system
xk+1 = Axk + wk, (1)

where xk ∈ Rn is the system state and wk is a white
Gaussian noise with covariance matrix Q > 0. The initial
state x0 is a Gaussian random vector with mean x̄0 and
covariance matrix P0 > 0. To remotely estimate the system
state, we use a sensor network with d ≥ 2 sensors to take
noisy measurements, i.e.,

yik = Cixk + vik, i ∈ {1, 2, . . . , d}, (2)
where vik ∈ Rmi is a white Gaussian noise of sensor i with
covariance matrix Ri > 0 and

∑d
i=1 mi = m. In addition,

x0, wk and vik are mutually independent. All the random

variables in this paper are assumed to be defined on a
common probability space (Ω,P,F), where Ω is the space
of elementary events, F is the underlying σ-field on Ω, and
P is a probability measure on F . Throughout the paper,
we denote

yk = col{y1k, y2k, . . . , ydk}, C = col{C1, C2, . . . , Cd}, (3)
where col{·} is a column operator, i.e., col{C1, C2} =
[CT

1 , C
T
2 ]

T , and assume that (A,C) is observable.

Each sensor and the central estimator are linked through a
communication network. Due to the channel unreliability,
the transmitted packets may be randomly lost. We use a
binary random process γi

k to describe the packet loss pro-
cess. That is, γi

k = 1 indicates that the packet transmitted
from sensor i is successfully delivered to the estimator at
time k, or γi

k = 0 if the packet is lost.

The implication of packet loss is that the estimator may
fail to generate a stable state estimator. To study how the
packet loss will affect the stability of the MMSE estimator,
we denote

Υk = diag{γ1
kI1, . . . , γ

d
kId}, (4)

where Ii ∈ Rmi×mi is an identity matrix, and define the
packet receival matrix as

Sk = diag{Υ0,Υ1, . . . ,Υk−1}. (5)
The set of all possible Sk will be denoted by Sk which
consists of 2kd elements. The information available to the
estimator at time k is given as follows:

Fk = {(Υ0,Υ0y0), (Υ1,Υ1y1) . . . , (Υk,Υkyk)}. (6)
Denote the MMSE (one-step-ahead) predictor and the
MMSE estimator by

x̂k|k−1 = E[xk|Fk−1] and x̂k|k = E[xk|Fk]

respectively. Their corresponding estimation error covari-
ance matrices are then given by

Pk|k−1 = E[(xk − x̂k|k−1)(xk − x̂k|k−1)
′|Fk−1]

and
Pk|k = E[(xk − x̂k|k)(xk − x̂k|k)

′|Fk].

Then, a Kalman like algorithm is developed to recursively
compute the MMSE estimate and we establish the packet
loss condition under which the mean of the state estima-
tion error covariance matrix is uniformly bounded, i.e.,

lim sup
k→∞

E[Pk|k] < ∞, (7)

where the mathematical expectation is taken with respect
to the random process {Υk}. Here (7) is interpreted that
there exists a positive-definite matrix P̄ > 0 such that for
all k ≥ 0,

E[Pk|k] < P̄ or E[Pk|k−1] < P̄ .

Similar to that of Sinopoli et al. [2004], the Kalman filter
is still optimal under multiple sensors as shown below.
Theorem 1. The MMSE estimate for the networked sys-
tem in (1)-(2) is recursively computed by

x̂k|k = x̂k|k−1 +KkΥk(yk − Cx̂k|k−1); (8)

Pk|k = Pk|k−1 −KkΥkCPk|k−1, (9)
where the Kalman gain

Kk = Pk|k−1C
∗Υk(ΥkCPk|k−1C

∗Υk +R)−1

and R = diag{R1, . . . , Rd}.
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