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Abstract: This work deals with state feedback compensation of disturbance inputs in
continuous-time switched linear systems, with the requirement that the closed-loop systems be
exponentially stable under switching signals with a sufficiently large dwell-time. Constructive
conditions for the problem to be solvable are shown, on the assumption that the given switched
linear system has zero initial state. The effects of nonzero initial states are inspected. The
theoretical background consists of both classic and novel ideas of the geometric approach,
enhanced with notions specifically oriented to switched linear systems.
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1. INTRODUCTION

In the last few decades, switched systems have effectively
been employed in solving control problems that involve
systems with different modes of operation: e.g., LQR opti-
mal control (Balandat et al., 2012),H2 control (Mahmoud,
2009), H∞ control (Deaecto et al., 2011), output regula-
tion (Zattoni et al., 2013), model matching (Conte et al.,
2014), and disturbance decoupling (Otsuka, 2010; Conte
and Perdon, 2011; Zattoni and Marro, 2013) are typical
synthesis problems recently formulated for switched sys-
tems. As to disturbance decoupling, the abovementioned
papers are focused on the requirement that the closed-
loop system be quadratically stable. In (Otsuka, 2010;
Conte and Perdon, 2011), quadratic stability of the closed-
loop system is sought for a suitable switching law. In
(Zattoni and Marro, 2013), quadratic stability is requested
for arbitrary switching signals. However, quadratic stabil-
ity is quite a demanding specification. As is well-known
(e.g., Lin and Antsaklis, 2009), quadratic stability under
arbitrary switching is only a sufficient condition for asymp-
totic stability and could be rather restrictive. Moreover, it
has also been shown that switched systems may not be
asymptotically stable under arbitrary switching, but may
enjoy this property for some classes of switching signals,
satisfying specific constraints. In addition, restrictions on
the switching signals may arise from physical constraints
on the systems or may be inferred from some knowledge
of the switching rules. For these reasons, in this work,
we will investigate the problem of disturbance decoupling
with exponential stability under restricted switching.

Notation: R, R+, Z+, and C
− stand for the sets of real

numbers, nonnegative real numbers, nonnegative integer
numbers, and complex numbers with negative real part,
respectively. Matrices and linear maps are denoted by

upper-case letters, like A. The image, the kernel, and the
spectrum of A are denoted by imA, kerA, and λ(A),
respectively. The transpose of A is denoted by A�. Vector
spaces and subspaces are denoted by calligraphic letters,
like V. The quotient space of a subspace V over a subspace
W⊆V is denoted by V/W. The restriction of a linear map
A to an A-invariant subspace J is denoted by A|J . The
inverse image of a subspace V through a linear map B
is denoted by B−1V. The symbol � denotes union with
repetition count. The symbols I and O respectively stand
for an identity matrix and a zero matrix with appropriate
dimensions.

2. PROBLEM STATEMENT

Let Σσ(t) be a continuous-time switched linear system
defined by

Σσ(t) ≡
{
ẋ(t) = Aσ(t) x(t) +Bσ(t) u(t) +Hσ(t) h(t),
e(t) = Eσ(t) x(t),

(1)
where t∈R

+ is the time variable, x∈X =R
n is the state,

u∈R
p is the control input, h∈R

m is the disturbance
input, and e∈R

q is the output, with p,m, q≤n. Let the
modes of Σσ(t) be the linear time-invariant systems of the
set {Σi, i∈I}, where I = {1, 2, . . . , N} and

Σi ≡
{
ẋ(t) = Ai x(t) +Bi u(t) +Hi h(t),
e(t) = Ei x(t),

i ∈ I, (2)

with Ai, Bi, Hi, Ei constant real matrices of suitable
dimensions. Let Bi, Hi, Ei be full-rank matrices. Let
the sets of the admissible control input signals and of
the admissible disturbance input signals be respectively
defined as the sets of piecewise-continuous functions u(t)
and h(t), with t∈R

+, taking finite values in R
p and R

m.
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Let the switching signal σ(t) be defined as a measurable
and not a-priori known map σ :R+ →I, t→ i, so that the
active mode at the time t∈R

+ is Σi, with i=σ(t). The
switching signal σ(t) is assumed to be subject to time-
domain restrictions as specified below. Let t�, with �∈Z

+,
be the sequence of the switching times. The positive real
constant τ , defined as τ = inf�∈Z+ {t�+1 − t�}, is assumed
to be greater than or equal to a finite positive real con-
stant τd. The set of all switching signals σ(t) with τ no
smaller than τd is denoted by Sτd and the finite positive
real constant τd is called dwell-time. Hence, the time-
domain restriction on σ(t) can be concisely expressed as
σ(t)∈Sτd .

Let Fσ(t) denote a switched state feedback, associated with

the set {Fi ∈R
p×n, i∈I}. Hence, the closed-loop system

is described by the continuous-time switched linear system

Σ̂σ(t) ≡
{
ẋ(t) = (Aσ(t) +Bσ(t) Fσ(t))x(t) +Hσ(t) h(t),
e(t) = Eσ(t) x(t),

(3)
with the modes

Σ̂i ≡
{
ẋ(t) = (Ai +Bi Fi)x(t) +Hi h(t),
e(t) = Ei x(t),

i ∈ I. (4)

Let the following assumption hold:

A 1. x(0)= 0.

Assumption A 1 is a standing assumption in perfect decou-
pling problems. However, as will be observed in Remark 37,
if the initial state is different from zero, zero output can
still be guaranteed, provided that the initial state belongs
to a certain subspace, which will be determined precisely.
Moreover, as will be pointed out in Remark 38, if the
initial state is different from zero and does not belong to
the abovementioned subspace, asymptotic decoupling can
be achieved in place of perfect decoupling, provided that
suitable stability conditions are satisfied.

The problem of disturbance decoupling, with the require-
ment that the closed-loop system be exponentially stable
under dwell-time switching, is stated as follows.

Problem 1. Given the continuous-time switched linear sys-
tem Σσ(t), defined by (1), with the modes {Σi, i∈I},
defined by (2), find a switched state feedback Fσ(t), as-
sociated with the set {Fi, i∈I}, such that, on Assump-
tion A 1, the following requirements are satisfied:

R 1. the output e(t) be equal to zero for all t∈R
+, for any

admissible disturbance h(t), with t∈R
+;

R 2. the system Σ̂σ(t), defined by (3), with the modes

{Σ̂i, i∈I}, defined by (4), be exponentially stable
over Sτd , for some finite positive real constant τd.

3. GEOMETRIC APPROACH FOR SWITCHED
LINEAR SYSTEMS

The purpose of this section is to gather the notions of
the geometric approach that will be used to solve Prob-
lem 1. For the reader’s convenience, some basic concepts
are reviewed (Basile and Marro, 1992; Wonham, 1985).
Novel geometric objects, like the reachability subspaces
constrained to the maximal robust controlled invariant
subspace, and new geometric ideas, like those of inter-

nal and external exponential stabilizability of the maxi-
mal robust controlled invariant subspace under dwell-time
switching, are also introduced.

The definitions and properties surveyed below refer to
the continuous-time switched linear system Σσ(t), defined
by (1), with the modes {Σi, i∈I}, defined by (2). Short
notations for images and null spaces of input and output
matrices, respectively, are used: Bi = imBi, Hi = imHi,
and Ei =kerEi, with i∈I. The subspace E ⊆X is defined
by E =

⋂
i∈I Ei. A subspace J ⊆X is said to be a robust

Ai-invariant subspace if Ai J ⊆J , for all i∈I. A subspace
V ⊆X is said to be a robust (Ai,Bi)-controlled invariant
subspace if Ai V ⊆V +Bi, for all i∈I. A subspace V ⊆X is
a robust (Ai,Bi)-controlled invariant subspace if and only
if there exists a set of linear maps {Fi, i∈I}, such that
(Ai +Bi Fi)V ⊆V, for all i∈I.
As was first shown in (Basile and Marro, 1987), the set
of all robust (Ai,Bi)-controlled invariant subspaces con-
tained in a given subspace E is an upper semilattice, with
the sum as binary operation and the inclusion as partial
ordering relation. The maximum of the set of all robust
(Ai,Bi)-controlled invariant subspaces contained in the
subspace E is called the maximal robust (Ai,Bi)-controlled
invariant subspace contained in E and is denoted by V∗

R.
A double-recursion algorithm for computing V∗

R was also
given in (Basile and Marro, 1987, Algorithm 1).

The remainder of this section is split into two parts.
Section 3.1 is aimed at introducing the notions of internal
switched dynamics and internal exponential stabilizability
under dwell-time switching of the maximal robust con-
trolled invariant subspace. The purpose of Section 3.2
is introducing the notions of external switched dynamics
and external exponential stabilizability under dwell-time
switching of the same subspace.

3.1 Internal Switched Dynamics and Internal Exponential
Stabilizability Under Dwell-Time Switching of the Maximal
Robust Controlled Invariant Subspace

In this work, the notion of maximal robust controlled
invariant subspace contained in a given subspace is referred
to the modes of a switched linear systems. Hence, switched
dynamics can be induced on that subspace and stabiliz-
ability issues can be raised for those dynamics. This section
is centred on the definition of internal switched dynam-
ics and the property of exponential stabilizability under
dwell-time switching of such dynamics. The exponential
stabilizability under dwell-time switching of the internal
dynamics of V∗

R depends on the properties of the fixed
internal dynamics of V∗

R with respect to each system of the
set {Σi, i∈I}. In order to analyze this aspect in detail, the
reachability subspace constrained to V∗

R — henceforth de-
noted by RV∗

R
,i — is introduced for each system Σi. Hence,

the assignable and fixed internal dynamics of V∗
R with

respect to Σi can easily be singled out, since the assignable
internal dynamics of V∗

R with respect to Σi coincides with
the internal dynamics of RV∗

R
,i. Based on this fact and on

a sufficient condition for a switched linear dynamics to be
exponentially stable under dwell-time switching (Morse,
1996), a sufficient condition for the internal switched dy-
namics of V∗

R to be exponentially stabilizable under dwell-
time switching is given. It is worth mentioning that the
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