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Abstract: This paper addresses the design of feedforward compensators for integrating
processes. Initially, the disturbance rejection problem for a classic two degrees-of-freedom control
scheme with feedfoward is analyzed to highlight the problem caused by integrating dynamics.
Afterwards, two simple tuning rules are derived to obtain undershoot-free responses based only
a desired settling time or by satisfying a tradeoff between maximum peak and settling time
specifications. Finally, some simulations are shown to prove the advantages of the proposed
controller. c⃝ Copyright IFAC 2014
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1. INTRODUCTION

Feedforwarding measurable disturbance signals to com-
pensate their effects before they affect the system is a
classic strategy in process control [Hägglund, 2013]. Even
though feedforward control is an old topic [Seborg et al.,
2004], most existing tuning rules only consider the ideal
cases or are only applied to very specific problems [Nisen-
feld and Miyasak, 1973, Seborg et al., 2004].

The ideal feedforward compensator within a classic feed-
forward scheme is formed as the quotient of the reversed
sign dynamics between the measurable disturbance and
the process output divided by the dynamics between the
control signal and the process output. However, in many
cases this controller becomes non-realizable due to several
causes: non-realizable delay inversion, non-minimum phase
zeros, unstable poles, integrating dynamics or improper
transfer function [Seborg et al., 2004, Guzmán et al., 2012].

In those cases where the perfect feedforward controller is
not realizable, the effect of the measurable disturbance
can not be totally rejected from feedback error using a
classic feedforward scheme. In [Brosilow and Joseph, 2012],
a non-interacting feedforward structure was introduced
to cope with this problem by introducing a new block.
This scheme greatly simplifies feedforward compensator
design, as an independent nominal analysis can be done
for both reference tracking and disturbance rejection even
if the ideal compensator is not realizable. However, the
main limitation of this scheme is that it cannot deal with
unstable or integrating plants.
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the Spanish Ministry of Education; and Spanish Ministry of Science
and Innovation and EU-ERDF funds under contract DPI2011-27818-
C02-01.

Recently, feedforward controller tuning rules have ap-
peared in the literature within classic and non-interacting
feedforward schemes. [Guzmán and Hägglund, 2011] pro-
posed a design based on the minimization of integral
absolute error and the reduction of undershoot for the
case when ideal feedforward is not realizable due to
delay inversion problems. Similar results within a non-
interacting feedforward scheme were also pointed in [Hast
and Hägglund, 2012] and [Rodŕıguez et al., 2013], where
the objective was the minimization of the integral squared
error. All of these rules are based on simple first-order plus
time delay systems, and their extension to higher-order
dynamics is seldom achievable.

A different approach for stable systems is proposed in [Vi-
lanova, 2007], where the authors establish a general design
framework, in which a robust tuning procedure within an
internal model control structure is used. This strategy was
later extended to unstable processes in [Vilanova et al.,
2009]. However, this control structure as well as those with
feedforward made from the reference require a different
design and are not treated in this work.

Within a classic feedforward scheme, a methodology to de-
sign feedforward compensators by shaping the disturbance
rejection response for the case when ideal feedforward is
not realizable due to plants with integrating dynamics is
required. To suggest simple tuning rules for this case is the
main contribution of this paper.

The paper is organized as follows. A brief overview of the
classic feedforward scheme including closed-loop relation-
ships is presented in section 2. Section 3 introduces the
proposed design methodology for shaping the disturbance
rejection response. Two simple rules to define the shape
response according to settling time or as a tradeoff between
maximum peak and settling time are obtained. In section
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4, the proposed design is tested with some simulations.
Finally, section 5 conducts the conclusions of the work.

2. CONTROL SCHEME

In this section, the classic feedforward control together
with a two degrees-of-freedom (2DOF) structure is de-
scribed. It is a well-known structure which allows to com-
pensate measurable disturbance effect as soon as possible
with an independent design for reference tracking and
disturbance rejection. The main advantage with respect
to classic feedback is that a control action is supplied even
if there is no feedback error.

Fig. 1 presents the classic feedforward block diagram.
There are two processes Pu and Pd relating the process
output y with the control signal u and the measurable
disturbance d, respectively. A primary controller Cfb and
a reference filter Fr are used within a 2DOF closed-
loop system for reference tracking purposes. Moreover, the
feedforward compensator Cff is connected in open-loop to
counteract measurable disturbance effects.

r u y

d

ΣΣΣ Cfb Pu

−Cff Pd

Fr

−1

Fig. 1. Block diagram illustrating a 2DOF + feedforward
control scheme

The relationships for reference tracking and disturbance
rejection within this scheme are

y(s)

r(s)
=

Fr(s)L(s)

1 + L(s)
(1)

y(s)

d(s)
=

Pff (s)

1 + L(s)
(2)

where L(s) = Cfb(s)Pu(s) is the open-loop direct chain,
and Pff (s) = Pd(s) − Cff (s)Pu(s) is the open-loop
disturbance rejection chain.

Note that within this scheme, perfect disturbance rejection
is achieved for Cff (s) = Pd(s)/Pu(s). However, when the
ideal compensator is not realizable, it can be observed that
an interaction between Cfb(s) and Cff (s) arises [Guzmán
and Hägglund, 2011, Guzmán et al., 2012].

In what follows, the special case of integrating plants is
presented and a procedure for shaping the disturbance
rejection response based on a desired settling time is
derived. Furthermore, an optimal controller which finds
a satisfying tradeoff between maximum peak and settling
time is proposed.

3. FEEDFORWARD DESIGN

In this section, the problem of integrating processes is
presented and the controller design approach is addressed.

Let us consider the following process descriptions

Pu(s) =
κu

Du(s)stu
(3)

Pd(s) =
κd

D−

d (s)
(4)

such that tu is the type of process Pu(s), Du(s) = 1 +
∑nu

i=1 au[i]s
i is a polynomial of degree nu and D−

d (s) = 1+
∑nd

i=1 ad[i]s
i is a polynomial of degree nd with all its roots

in the left half plane (LHP). Note that it is supposed
without any loss of generality that Du(0) = D−

d (0) = 1
to ensure that κu and κd are process integrator and static
gains, respectively.

As well-known, within a 2DOF control scheme, it is
possible to shape the reference tracking response by correct
tuning reference filter and feedback controller.

Let us consider

Fr(s) =
1

Dfr(s)
(5)

Cfb(s) = κfb
Nfb(s)

Dfb(s)stfb
(6)

such that tfb is the type of Cfb(s) and Dfr(0) = Nfb(0) =
Dfb(0) = 1 to ensure that 1 and κfb are Fr(s) and Cfb(s)
static and integrator gains, respectively.

The reference tracking response can now be expressed as
y(s)

r(s)
=

1

Dfr(s)

Nfb(s)

Nfb(s) +
Dfb(s)Du(s)s

tfb+tu

κfbκu

=
1

Dfr(s)

Nfb(s)

Dcl(s)

(7)

where Dcl(s) is a polynomial of degree ncl that represents
the closed-loop system dynamics. Note that since Dcl(0) =
1, if tfb + tu ≥ 1, the reference tracking response has
unitary static gain. In fact, to achieve zero steady-state
error against reference signals with tr poles in s = 0
(r(s) = s−tr ), it is necessary to set tfb ≥ tr − tu.

Furthermore, if it is set Dfr(s) = Nfb(s), the following
final expression is obtained

y(s)

r(s)
=

1

Dcl(s)
(8)

Remember that since Dcl(0) = 1, expression (8) has
unitary static gain.

3.1 Disturbance rejection

Within a classic feedforward scheme (see Fig. 1), it is
possible to improve the disturbance rejection behaviour
even if unstable dynamics exist in process Pu(s). In fact,
equation (2) can be expressed as

y(s)

d(s)
=

(

κd

D−

d (s)
− Cff (s)

κu

Du(s)
s−tu

)

Du(s)stuDfb(s)stfb

Dcl(s)

=

(

κdDu(s)stu

D−

d (s)
− Cff (s)κu

)

Dfb(s)stfb

Dcl(s)
(9)

where it can be observed that even unstable dynamics
of Pu(s) caused by its poles located in the right half
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