ARTICLE IN PRESS

Measurement xxx (xxxx) xxx-xxx

Contents lists available at ScienceDirect

Measurement

journal homepage: www.elsevier.com/locate/measurement

Data-driven operation and compensation approaches to tooth flank form error measurement for spiral bevel and hypoid gears

Wen Shao, Han Ding*, Jinyuan Tang

State Key Laboratory of High-performance Complex Manufacturing, School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China

ARTICLE INFO

ABSTRACT

Keywords: Spiral bevel and hypoid gears Tooth flank form error CMM measurement UNRBS fitting and stitching High-order machine setting modification In the actual design and manufacturing of spiral bevel and hypoid gears, the real tooth flank form geometry inevitably deviate from their theoretical or master target one, due to machine tolerances and systematic flexibility, heat treatment distortions, variation of cuttings forces and other noise factors. This deviation in normal direction is tooth flank form error which can cause some detrimental effects on tooth contact performances. Particularly, once the edge contact or highly concentrated stresses occurs, it will result in noisy operation and premature failure. This paper presents an accurate systematic CMM measurement method to prescribe and datadriven control the tooth flank form error. Firstly, the accurate measurement positioning is developed as an important step in whole measurement. And then, a data-driven programming is performed to prescribe a flank grid in CMM measurement. Where, this programming includes: (i) UMC machine settings are used to establish a universal tooth flank model, (ii) NURBS fitting and stitching approach is employed to accurate explicit flank expression, and (iii) flank parameterization using the steepest descent methods with Newton step is proposed to identify flank grid points. Moreover, to distinguish with the conventional methods, a high-order machine setting modification considering residual tooth flank form error is proposed to get a flexible compensation of tooth flank form error. Given numerical test can verify the proposed methods.

1. Introduction

1.1. Motivation

Spiral bevel and hypoid gears are widely applied in aircraft engine and automotive reducer for transformation of the rotation and torque between intersected axes. In their actual design and manufacturing, the real tooth flank form geometry inevitably deviate from their theoretical or master target one, due to machine tolerances and systematic flexibility, heat treatment distortions, variation of cuttings forces and dynamic effect from high speed cutting or grinding [1]. This tooth flank form error can cause some detrimental effects on tooth contact performances that unfavorable displacement of tooth contact pattern, increase of transmission error amplitude. Particularly, once the edge contact or highly concentrated stresses occurs, it will result in noisy operation and premature failure [2]. In the development process of spiral bevel and hypoid gear technology, a machine setting modification technique was usually employed to improve manufacture accuracy. Actually, the modification is a flexible compensation to tooth flank form error, in form of approximation to match a target flank which is predesigned tooth flank form error by applying measurement of CMM [3]. Its final target is the accurate determination of a set of machine settings which can be provided for the actual industrial manufacturing. More recently, with state-of-the-art CNC technology, UMC has been applied by establishing additional freedoms for modifying tooth form error flank in modern gear industry [4,5]. Machine settings modification technique [6] considering the mathematical relationships between their components and universal machine settings [7,8] has become an active topic in design and manufacturing. They focus on not only the pursuit of geometric properties but also physical properties [9,10]. Where, some technical aspects such as the prescribing tooth form error flank and the optimal selection of a small amount of machine settings can make this machine setting modification become more versatility, efficiency and flexibility [11].

Undeniably, the accuracy requirement on both design and manufacturing has always played an important role in the machine settings modification. In recent literature, gear designers mainly focus on numerical algorithm of identifying the accurate machine settings [12]. However, there are some aspects affecting modification accuracy has not been paid enough attention. Where, establishment of modification model, modification evaluation criterion setup and optimal selection of design variable are also indispensable to ensure accuracy. In the present

* Corresponding author.

E-mail address: dinghan0204@163.com (H. Ding).

https://doi.org/10.1016/j.measurement.2018.03.004

Received 13 September 2017; Received in revised form 1 March 2018; Accepted 2 March 2018 0263-2241/@ 2018 Elsevier Ltd. All rights reserved.

W. Shao et al.

R_a ratio of generating rollCMMscoordinate measuring machines E_M blank offsetCNCcomputer numerically controlled X_B sliding base settingUMCuniversal motion concept γ_m machine root angleTGAtooth contact analysis X_D machine contargNTCAnumerical toot notact analysis M_{bf} , M_{fc} transformation matrices from the cutter to the blankNURBSnon-uniform rational B-spline n_b normal vector at work gear blankRMSEroot mean-squared error v_{bc} relative velocity of gear blank and the cutterSQPsequential quadratic programming x design variable, namely selected machine settingsSGEsspatial geometric error x^* new machine settings μ rotation angle of the cutter n number of flank data points q basic cradle rotation angle $h_t^{(0)}$ prescribed tooth flank form error value of the target flank $p_t^{(0)}$ i-th grid data point on target flank $h_t^{(0)}$ prescribed tooth flank form error value of the target flank $h_{0}^{(0)}$ $h_{trial} realityU,Ugrid out coort and its elementVRvirtual realityU,Ugrid data point on target flankh_{0}^{(0)}h_{trial} realityU,Ugrid data point on target flankh_{0}^{(0)}h_{trial} realityU,Ugrid out coort and its elementVRvirtual realityU,Ugrid out coort and its elementR^{t}tool blade with edge $	Nomenclature		S_r	cutter radial setting
CMMscoordinate measuring machines E_M blank offsetCNCcomputer numerically controlled X_B sliding base settingCMCuniversal motion concept γ_m machine root angleTCAtooth contact analysis X_D machine contart to back baseNTCAnumerical tooth contact analysis M_{bf} , M_{fc} transformation matrices from the cutter to the blankNURBSnon-uniform rational B-spline n_b normal vector at work gear blank and the cutterSQPsequential quadratic programming x design variable, namely selected machine settingsSGEsspatial geometric error x_0 the initial basic machine settingsGGWvariable of the cuttermnumber of flank data points θ variable of the blade edgennumber of the selected variables $p_1^{(0)}$ i-th grid data point on basic tooth flank φ prescribed tooth flank form error vector and numerical items $p_1^{(0)}$ i-th grid data point on basic tooth flank β_i prescribed tooth flank form error vector and numerical items $p_1^{(0)}$ i-th grid data point on basic tooth flank γ_i variabulat oth flank form error vector and numerical items $p_1^{(0)}$ i-th grid data point on basic tooth flank γ_i variabulat oth flank form error vector and numerical items $p_1^{(0)}$ i-th grid data point on basic tooth flank γ_i variabulat oth flank form error vector and numerical items $p_1^{(0)}$ i-th grid data point on basic tooth flank γ_i			R_a	ratio of generating roll
CNCcomputer numerically controlled X_B sliding base settingUMCuniversal motion concept γ_m machine root angleTCAtooth contact analysis X_D machine conter to back baseNTCAnumerical tooth contact analysis M_{bf} , M_{fc} transformation matrices from the cutter to the blankNURBSnon-uniform rational B-spline n_b normal vector at work gear blank and the cutterSQPsequential quadratic programming \mathbf{x}_0 the initial basic machine settingsSGEsspatial geometric error \mathbf{x}_0 the initial basic machine settingsSGEsspatial geometric error \mathbf{x}^* new machine settings μ rotation angle of the cuttermnumber of flank data points θ variable of the blade edgennumber of the selected variables $\mu^{(n)}_{(n)}$, $h_m^{(n)}$) tooth flank form error value of the target flank p_i $p_i^{(n)}$, $h_m^{(n)}$) tooth flank form error vector and numerical itemsitemsVRvirtual realityV, Vcontrol vector and its elementVRvirtual realityV, Wweighting factor vector and element r_c toldae with edge geometry N_i Jacobian matrix q_c blade pressure angle $\mathbf{R}^{m \times n} \ M^{n \times n} \ M \ M_n$ and $n \times n$ dimensional spaces $\mu_i^{(n)}$ cutter wiell and J Jacobian matrix q_c toldae with edge geometry N_i M_i $p_i^{(n)}$ cutter wiell angle $M^{m \times n} \$	CMMs	coordinate measuring machines	E_M	blank offset
UMCuniversal motion concept γ_m machine root angleTCAtooth contact analysis X_D machine center to back baseNTCAnumerical tooth contact analysis M_{bf} , M_{fc} transformation matrices from the cutter to the blankNURBSnon-uniform rational B-spline n_b normal vector at work gear blankRMSEroot mean-squared error v_{bc} relative velocity of gear blank and the cutterSQPsequential quadratic programming x_0 design variable, namely selected machine settingsSGEsspatial geometric error x^* new machine settingsor totation angle of the cutternnumber of flank data points θ variable of the blade edgennumber of the selected variables q basic cradle rotation angle $h_i^{(0)}$ prescribed tooth flank form error value of the target flank p_i^n i-th grid data point on basic tooth flank φ prescribed tooth flank form error value of the target flank h^o_0 , $(h_1^{(0)},, h_m^{(0)})$ tooth flank form error vector and numerical itemsitemsU, Ugrid node vector and its elementUGMuniversal generation model V , V contor vector and its element V_{ac} r_c tool blade with edge geometry J Jacobian matrix r_c tool blade with edge geometry J Jacobian matrix r_c universal generation model J Jacobian matrix r_c universal generation model J threshold value of the optimized tooth flank error	CNC	computer numerically controlled	X_B	sliding base setting
TCAtooth contact analysis X_D machine center to back baseNTCAnumerical tooth contact analysis M_{bf} , M_{fc} transformation matrices from the cutter to the blankNURBSnon-uniform rational B-spline n_b normal vector at work gear blank and the cutterSMSEroot mean-squared error v_{bc} relative velocity of gear blank and the cutterSQPsequential quadratic programming x design variable, namely selected machine settingsTRtrust region x_0 the initial basic machine settingsSGEsspatial geometric error x^* new machine settings μ rotation angle of the cutternnumber of flank data points θ variable of the blade edgennumber of the selected variables p_i^* <i>i</i> -th grid data point on basic tooth flank \wp prescribed tooth flank form error value of the target flank $p_i^{(n)}$ <i>i</i> -th grid data point on target flank \wp prescribed tooth flank form error vector and numerical $h_i^{(n)}$ <i>i</i> -th grid data point on target flank \wp prescribed tooth flank form error vector and numerical $h_{i0}^{(n)}$ <i>i</i> -th grid data point on target flank \wp prescribed tooth flank form error vector and numerical $h_{i0}^{(n)}$ <i>i</i> -th grid data point on target flank \wp prescribed tooth flank form error vector and numerical $h_{i0}^{(n)}$ <i>i</i> -th grid data point on target flank \wp tresmit p_i^* <i>i</i> -th grid data point on target flank \wp tresmit p_i^*	UMC	universal motion concept	γ _m	machine root angle
NTCAnumerical tooth contact analysis M_{bf} , M_{fc} transformation matrices from the cutter to the blankNURBSnon-uniform rational B-spline n_b normal vector at work gear blankRMSEroot mean-squared error v_{bc} relative velocity of gear blank and the cutterSQPsequential quadratic programming x design variable, namely selected machine settingTRtrust region x_0 the initial basic machine settingsSGEsspatial geometric error x^* new machine settings θ variable of the cuttermnumber of flank data points θ variable of the blade edgennumber of the selected variables $q^{(0)}$ basic cradle rotation angle $h_i^{(0)}$ prescribed tooth flank form error value of the target flank $p_i^{(0)}$ i-th grid data point on basic tooth flank φ prescribed tooth flank form error value of the target flank $h_i^{(0)}$,, $h_m^{(0)}$) tooth flank form error vector and numerical itemsitemsU, Ugrid node vector and its elementVRvirtual realityUo universal generation modelW, wweighting factor vector and element R_c cutter point radiusJJacobian matrix a_c blade pressure angle $R^{m \times m}$ $R^{n \times n}$ m × m and n × n dimensional spaces ρ_f angle of the cutter head λ threshold value of the optimized tooth flank error A_f angle of the cutter head λ threshold value of the optimized tooth flank error A_f angle	TCA	tooth contact analysis	X_D	machine center to back base
NURBSnon-uniform rational B-spline n_b normal vector at work gear blankRMSEroot mean-squared error v_{bc} relative velocity of gear blank and the cutterSQPsequential quadratic programming x design variable, namely selected machine settingsTRtrust region x_0 the initial basic machine settingsSGEsspatial geometric error x^* new machine settings μ rotation angle of the cuttermnumber of flank data points θ variable of the blade edgennumber of the selected variables q basic cradle rotation angle $h_t^{(0)}$ prescribed tooth flank form error value of the target flank $p_t^{(0)}$ <i>i</i> -th grid data point on basic tooth flank \wp prescribed tooth flank form error vector and numerical $h_t^{(0)}$ <i>i</i> -th grid data point on target flank h_c h_c , $h_n^{(0)}$ $h_n^{(0)}$ <i>i</i> -th grid data point on target flank μ_c V_c $h_t^{(0)}$ <i>i</i> -th grid data point on target flank μ_c V_c $h_{0}^{(0)}$ <i>i</i> -th grid data point on target flank μ_c V_c $h_n^{(0)}$ <i>i</i> -th grid data point on target flank μ_c V_c $h_{0}^{(0)}$ <i>i</i> -th grid data point on target flank μ_c V_c $p_i^{(0)}$ <i>i</i> -th grid data point on target flank \wp V_c $P_i^{(0)}$ <i>i</i> -th grid data point on target flank ψ_c V_c V_c variable V_c V_c V_c V_c vari	NTCA	numerical tooth contact analysis	$\mathbf{M}_{bf}, \mathbf{M}_{fc}$	transformation matrices from the cutter to the blank
RMSEroot mean-squared error v_{bc} relative velocity of gear blank and the cutterSQPsequential quadratic programming x design variable, namely selected machine settingTRtrust region x_0 the initial basic machine settingsSGEsspatial geometric error x^* new machine settings μ rotation angle of the cuttermnumber of flank data points θ variable of the blade edgennumber of the selected variables q basic cradle rotation angle $h_i^{(0)}$ prescribed tooth flank form error value of the target flank $p_i^{(0)}$ i-th grid data point on target flank φ prescribed tooth flank form error vector and numerical items $h_{i}^{(0)}$, $h_m^{(0)}$) tooth flank form error vector and numerical itemsU, Ugrid node vector and its elementUGMuniversal generation modelW, wweighting factor vector and element r_c tool blade with edge geometry J_i Jacobian matrix a_c blade pressure angle $R^{m \times m}$, $R^{n \times m}$ m $x m$ and $n \times n$ dimensional spaces ρ_f edge radius of the cutter head λ threshold value of the optimized tooth flank error λ_f angle of the circular arcFWface width	NURBS	non-uniform rational B-spline	\boldsymbol{n}_b	normal vector at work gear blank
SQPsequential quadratic programming \mathbf{x} design variable, namely selected machine settingTRtrust region \mathbf{x}_0 the initial basic machine settingsSGEsspatial geometric error \mathbf{x}^* new machine settings μ rotation angle of the cuttermnumber of flank data points θ variable of the blade edgennumber of the selected variables q basic cradle rotation angle $h_t^{(0)}$ prescribed tooth flank form error value of the target flank $p_t^{(0)}$ i-th grid data point on target flank p prescribed tooth flank form error vector and numerical items $p_t^{(0)}$, $h_m^{(0)}$) tooth flank form error vector and numerical itemsU, Ugrid node vector and its elementVRvirtual realityV, Vcontrol vector and its elementUGMuniversal generation modelW, wweighting factor vector and element r_c tooth blade with edge geometry J Jacobian matrix a_c blade pressure angle $\mathbb{R}^{m \times m}$, $\mathbb{R}^{n \times m}$ and $n \times n$ dimensional spaces ρ_f edge radius of the cutter head λ threshold value of the optimized tooth flank error ζ utter swivel angleFWface width ζ cutter swivel angleTHtooth height	RMSE	root mean-squared error	\boldsymbol{v}_{bc}	relative velocity of gear blank and the cutter
TRtrust region x_0 the initial basic machine settingsSGEsspatial geometric error x^* new machine settings μ rotation angle of the cuttermnumber of flank data points θ variable of the blade edgennumber of the selected variables q basic cradle rotation angle $h_i^{(0)}$ prescribed tooth flank form error value of the target flank $p_i^{(0)}$ i-th grid data point on basic tooth flank \wp prescribed tooth flank form error value of the target flank $p_i^{(0)}$, $h_m^{(0)}$) tooth flank form error vector and numerical itemsU, Ugrid node vector and its elementVRvirtual realityV, Vcontrol vector and its element r_c tool blade with edge geometry $N_{i,3}(U)$ cubic B-spline base function R_c cutter point radius J Jacobian matrix α_c blade pressure angle $R^{m \times m}$, $R^{m \times m}$, $m \times m$ and $n \times n$ dimensional spaces ρ_f angle of the circular arcFWface width ζ cutter swivel angleTHtooth height σ cutter tilt angleTHtooth height	SQP	sequential quadratic programming	x	design variable, namely selected machine setting
SGEsspatial geometric error x^* new machine settingsμrotation angle of the cuttermnumber of flank data pointsθvariable of the blade edgennumber of the selected variablesqbasic cradle rotation angle $h_i^{(0)}$ prescribed tooth flank form error value of the target flank $p_i^{(0)}$ i-th grid data point on basic tooth flank φ prescribed tooth flank form error threshold $p_i^{(0)}$ i-th grid data point on target flank $h_i (h_1,, h_m)$ residual tooth flank form error vector and numerical $h^{(0)}$, $h_m^{(0)}$) tooth flank form error vector and numericalitemsVRvirtual realityV, Vcontrol vector and its elementVRvirtual realityV, Vcontrol vector and element r_c tool blade with edge geometry $N_{i,3}(U)$ cubic B-spline base function R_c cutter point radiusJJacobian matrix ρ_f edge radius of the cutter head λ threshold value of the optimized tooth flank error λ_f angle of the circular arcFWface width ζ cutter swivel angleFWface width σ cutter tilt angleTHtooth height	TR	trust region	\boldsymbol{x}_0	the initial basic machine settings
μrotation angle of the cuttermnumber of flank data pointsθvariable of the blade edgennumber of the selected variablesqbasic cradle rotation angle $h_i^{(0)}$ prescribed tooth flank form error value of the target flank $p_i^{(0)}$ <i>i</i> -th grid data point on basic tooth flank \wp prescribed tooth flank form error value of the target flank $p_i^{(0)}$ <i>i</i> -th grid data point on target flank $h_i (h_1,, h_m)$ residual tooth flank form error vector and numerical items <i>i</i> temsVRvirtual realityVcontrol vector and its elementVGMuniversal generation modelW, wweighting factor vector and element r_c tool blade with edge geometry J Jacobian matrix a_c blade pressure angle $R^{m \times m}$, $R^{n \times n}$ m \times m and n \times n dimensional spaces ρ_f edge radius of the cutter head λ threshold value of the optimized tooth flank error ζ cutter swivel angleTHtooth height	SGEs	spatial geometric error	x *	new machine settings
θvariable of the blade edgennumber of the selected variablesqbasic cradle rotation angle $h_i^{(0)}$ prescribed tooth flank form error value of the target flank $p_i^{(0)}$ i-th grid data point on basic tooth flank \wp prescribed tooth flank form error threshold p_i^* i-th grid data point on target flank \wp prescribed tooth flank form error vector and numerical items $h^{(0)}, (h_1^{(0)},, h_m^{(0)})$ tooth flank form error vector and numerical items U, U grid node vector and its elementVRvirtual realityV, Vcontrol vector and its elementVGMuniversal generation modelW, wweighting factor vector and element r_c tool blade with edge geometry J_i Jacobian matrix α_c blade pressure angle $R^{m \times m}$, $R^{n \times n}$ m × m and n × n dimensional spaces ρ_f edge radius of the cutter head λ threshold value of the optimized tooth flank error λ_r angle of the circular arcFWface width ζ cutter swivel angleTHtooth height	μ	rotation angle of the cutter	m	number of flank data points
q basic cradle rotation angle $h_i^{(0)}$ prescribed tooth flank form error value of the target flank $p_i^{(0)}$ <i>i</i> -th grid data point on basic tooth flank p_i <i>i</i> -th grid data point on target flank $p_i^{(0)}$ prescribed tooth flank form error threshold p_i^{*} <i>i</i> -th grid data point on target flank $h_i^{(0)}$ prescribed tooth flank form error vector and numerical items $p_i^{(0)}$	θ	variable of the blade edge	n	number of the selected variables
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	q	basic cradle rotation angle	$h_i^{(0)}$	prescribed tooth flank form error value of the target flank
p_i^* <i>i</i> -th grid data point on target flank $h, (h_1, \dots, h_m)$ residual tooth flank form error vector and numerical items $h^{(0)}, (h_1^{(0)}, \dots, h_m^{(0)})$ tooth flank form error vector and numerical items $h, (h_1, \dots, h_m)$ residual tooth flank form error vector and numerical itemsVRvirtual realityU, U grid node vector and its elementVRvirtual realityV, V control vector and its elementUGMuniversal generation modelW, w weighting factor vector and element r_c tool blade with edge geometry $N_{i,3}(U)$ Jacobian matrix R_c cutter point radiusJ acobian matrix ρ_f edge radius of the cutter head λ threshold value of the optimized tooth flank error λ_f angle of the circular arcFW face width ζ cutter swivel angleTH tooth height	$p_{i}^{(0)}$	i-th grid data point on basic tooth flank	େ	prescribed tooth flank form error threshold
$h^{(0)}$, $(h_1^{(0)},, h_m^{(0)})$ tooth flank form error vector and numerical itemsitemsU, Ugrid node vector and its elementVRvirtual realityV, Vcontrol vector and its elementUGMuniversal generation modelW, wweighting factor vector and element r_c tool blade with edge geometry $N_{i,3}(U)$ cubic B-spline base function R_c cutter point radiusJJacobian matrix α_c blade pressure angle $R^{m \times m}$, $R^{n \times n}$ m × m and n × n dimensional spaces ρ_f edge radius of the cutter head λ threshold value of the optimized tooth flank error λ_f angle of the circular arcFWface width ζ cutter swivel angleTHtooth height	\boldsymbol{p}_i^*	i-th grid data point on target flank	h , (h ₁ ,	, $h_{m})\;$ residual tooth flank form error vector and numerical
itemsU, Ugrid node vector and its elementVRvirtual realityV, Vcontrol vector and its elementUGMuniversal generation modelW, wweighting factor vector and element r_c tool blade with edge geometry $N_{i,3}(U)$ cubic B-spline base function R_c cutter point radiusJJacobian matrix α_c blade pressure angle $R^{m \times m}$, $R^{n \times n}$ m × m and n × n dimensional spaces ρ_f edge radius of the cutter head λ threshold value of the optimized tooth flank error λ_f angle of the circular arcFWface width ζ cutter swivel angleTHtooth height σ cutter tilt angleTHtooth height	$\boldsymbol{h}^{(0)}, (h_1^{(0)}, \dots, h_m^{(0)})$ tooth flank form error vector and numerical			items
VRvirtual realityV, Vcontrol vector and its elementUGMuniversal generation modelW, wweighting factor vector and element r_c tool blade with edge geometry $N_{i,3}(U)$ cubic B-spline base function R_c cutter point radiusJJacobian matrix α_c blade pressure angle $\mathbb{R}^{m \times m}$, $\mathbb{R}^{n \times n}$ m × m and n × n dimensional spaces ρ_f edge radius of the cutter head λ threshold value of the optimized tooth flank error λ_f angle of the circular arcFWface width ζ cutter swivel angleTHtooth height σ cutter tilt angleTHtooth height		items	U , U	grid node vector and its element
UGMuniversal generation modelW, wweighting factor vector and element r_c tool blade with edge geometry $N_{i,3}(U)$ cubic B-spline base function R_c cutter point radiusJJacobian matrix α_c blade pressure angle $\mathbb{R}^{m \times m}$, $\mathbb{R}^{n \times n}$ m \times m and n \times n dimensional spaces ρ_f edge radius of the cutter head λ threshold value of the optimized tooth flank error λ_f angle of the circular arcFWface width ζ cutter swivel angleTHtooth height σ cutter tilt angleTH	VR	virtual reality	V , V	control vector and its element
r_c tool blade with edge geometry $N_{i,3}(U)$ cubic B-spline base function R_c cutter point radiusJJacobian matrix α_c blade pressure angle $\mathbb{R}^{m \times m}$, $\mathbb{R}^{n \times n}$ m × m and n × n dimensional spaces ρ_f edge radius of the cutter head λ threshold value of the optimized tooth flank error λ_f angle of the circular arcFWface width ζ cutter swivel angleTHtooth height σ cutter tilt angleFWface width	UGM	universal generation model	W , w	weighting factor vector and element
R_c cutter point radiusJJacobian matrix α_c blade pressure angle $\mathbf{R}^{m \times m}$, $\mathbf{R}^{n \times n}$ m \times m and n \times n dimensional spaces ρ_f edge radius of the cutter head λ threshold value of the optimized tooth flank error λ_f angle of the circular arcFWface width ζ cutter swivel angleTHtooth height σ cutter tilt angleFWface width	r _c	tool blade with edge geometry	N _{i,3} (U)	cubic B-spline base function
α_c blade pressure angle $\mathbf{R}^{m \times m}$, $\mathbf{R}^{n \times n}$, $m \times m$ and $n \times n$ dimensional spaces ρ_f edge radius of the cutter head λ threshold value of the optimized tooth flank error λ_f angle of the circular arcFWface width ζ cutter swivel angleTHtooth height σ cutter tilt angleFWface width	$R_{\rm c}$	cutter point radius	J	Jacobian matrix
$ ρ_f $ edge radius of the cutter head $λ$ threshold value of the optimized tooth flank error $λ_f$ angle of the circular arcFWface width $ζ$ cutter swivel angleTHtooth height $σ$ cutter tilt angleFF	$\alpha_{\rm c}$	blade pressure angle	$\mathbf{R}^{m \times m}, \mathbf{R}$	$m^{n \times n}$ m × m and n × n dimensional spaces
$λ_{\rm f}$ angle of the circular arcFWface width $ζ$ cutter swivel angleTHtooth height $σ$ cutter tilt angleTHtooth height	ρ_{f}	edge radius of the cutter head	λ	threshold value of the optimized tooth flank error
ζcutter swivel angleTHtooth height $σ$ cutter tilt angleTH	λ_{f}	angle of the circular arc	FW	face width
σ cutter tilt angle	ζ	cutter swivel angle	TH	tooth height
	σ	cutter tilt angle		

paper, some data-drive operation methods are proposed for flexible design of tooth flank micro-geometry topography with higher accuracy.

Firstly, CMM measurement is proposed to prescribe tooth flank form error by investigating the components of tooth form error flank. Where, NURBS fitting in piecewise and G¹ stitching are used to determine a prescribed tooth flank grid for CMM measurement, and to identify the prescribe tooth form error flank as a target flank [13]. They can provide an accurate input for the whole modification according to user's requirements. Here, the operation and identification of the tooth flank form error can make the machine setting modification get a higher precision and validity [5]. Then, a more accurate machine setting modification method is proposed to obtain an accurate data-drive compensation of tooth flank form error measurement. Where, in order to distinguish with the first or second-order characteristic in the conventional modification [6,12], the high-order characteristics [13] of tooth form error flank is developed by applying universal machine settings with high-order characteristics which are set as the optimal variables [8,9]. Meanwhile, it is different that it only considers tooth flank form error in traditional modification, residual tooth flank form error as new evaluation criterion and tooth flank form error as a design tolerance, which make modification become more flexible and practical for the actual manufacturing.

1.2. Related works

In recent literature, there is only a small number of researchers have occasionally mentioned flank topography design and optimization in machine settings modification. Firstly, bi-cubic interpolation was employed for tooth flank fitting. Zhang et al. [14] established tooth flank model by applying bi-cubic interpolation method in proposed NTCA. Litivin et al. [15] also employed bi-cubic interpolation to construct tooth flank geometry for simulation of gear meshing. Then, B-spline interpolation became a main flank topography fitting method. It was used by Artoni et al. [16] and Gabiccini et al. [17] to obtain accurate tooth flank in optimization of the loaded contact pattern, considering

the explicit expression for tooth flank as well as a simple form in addition to some advantages of this method itself. Fong [18] utilized this method to reconstruct tooth flank as a B-spline free form surface for analyzing toot contact performances, according to measured tooth geometry data. Actually, in the machine setting modification, in additional to tooth flank topography, it is needed to pay more attention on the tooth flank form error topography. As a result, its aim is to minimize the tooth flank form error or residual tooth flank form error for approximation of the prescribed target flank as much as possible [19] by solving the objective function of whole modification having a strong nonlinearity problem [20]. Ding [21] proposed the accurate NURBS fittings for the tooth flank after simulation process modeling of the spiral bevel and hypoid gears, and provided some optimization methods after accurate fitting for getting a higher accuracy. Furthermore, in whole modification process, the tooth form error flank especially the residual tooth form error flank was needed to get higher accuracy. In Ref. [18] by Fong, the tooth flank error was reduce from original 3 mm to 100 μm when control data points were increased from 5×8 to 37×37 points, and then reduced to less than $0.2\,\mu\text{m}$ by B-spline interpolation. In a study by Fan at Gleason Works [13], RMSE of tooth form error flank on tooth convex flank after high-order tooth flank form error modification was significantly reduced from the 33.8 µm to 1.8 µm. In Ref. [12] published by Artoni et al., with the predesigned optimal tooth form error flank with maximum-to-minimum error value was 60 to $-60 \,\mu\text{m}$, the maximum residual tooth flank form error was finally determined as $0.004\,\mu\text{m}$, while the modification with 17 machine setting parameters was solved successfully. It can indicate that the numerical scope of precision evaluation is very small and the accuracy of flank topography including the tooth flank, tooth flank form error and residual tooth flank form error can deeply affect the numerical result of machine settings modification.

In past decades, to compensate tooth flank form error, machine setting modification technique has always been developed and improved. Firstly, Krenzer [22] of The Gleason Works described a corrective machine setting method by using a linear regression. He Download English Version:

https://daneshyari.com/en/article/7121515

Download Persian Version:

https://daneshyari.com/article/7121515

Daneshyari.com