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Abstract: In this paper, multiobjective optimization (MOO) is applied to an optimal control
problem for a grab-shift unloader crane. The crane is modeled as a cart-pendulum system
with varying rope length and the trajectory of the grab is limited by the ship, the quay,
and the crane structure. The objectives to minimize are chosen as time, energy and maximal
instantaneous power. The optimal control problem is solved using a direct simultaneous optimal
control method. The study shows that MOO can be an efficient tool when choosing a good
compromise between conflicting objectives such as time and energy. Furthermore, navigation
among the Pareto optimal solutions has proven to be very useful when a user wants to learn
how the control variables interact with the process.
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1. INTRODUCTION

Grab-shift unloader cranes are used to move bulk material
from a ship to a hopper at shore. This type of cranes
are today normally operated by an operator controlling
the motion of the trolley and the grab so that fast and
efficient trajectories are obtained. In order to improve
the operation even more, the idea in this paper, is to
determine the trajectories using optimal control instead.
The optimal trajectories and control signals can then be
used in many ways to improve the operation, for instance,
to teach the operators or to run the crane autonomously.
The formulation and solution of optimal control problems
for cranes have been studied in several earlier references,
see for instance, Al-Garni et al. (1995); Auernig and Troger
(1987); Hu and Teo (2004).

It is important that the cost function reflects the desired
behavior of the crane since the achieved trajectory and
control signals are chosen to make the cost function
as good as possible. Often the desired behavior is a
compromise between different objectives such as speed,
energy efficiency, control utilization etc. The objectives
are commonly conflicting which means that depending
on how the different objectives are prioritized, different
trajectories and control signals will be optimal. Here
optimal means that there is no way to improve one
objective without deteriorating another (Miettinen, 1999).
A solution that satisfies this property is denoted Pareto
optimal and the set of all Pareto optimal points is the
Pareto set. The image of the Pareto set in the objective
space is denoted the Pareto frontier. An optimal control
problem with many objectives is denoted a multiobjective
optimal control problem.

The multiobjective optimal control problem is in this
paper reformulated as a nonlinear program and the result
is a multiobjective optimization problem (MOO) which
can be written as
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There are many algorithms to “solve” a MOO. One class is
scalarization methods and another is vector optimization
methods, see Miettinen (1999). The first class combines
the objectives to form scalar objective functions that are
solved as single-objective problems to yield one point
in the Pareto set at a time. The second class treats
the objectives independently and solves the MOO as a
vector-valued optimization problem where many points in
the Pareto set are obtained at once. In this work, the
scalarization approach has been used.

In addition to how the Pareto optimal points are com-
puted, another choice is at which time the decision maker
(DM), i.e., the person who decides which solution is
“best”, makes the decision. In this paper, an interactive
method has been chosen where the DM is able to itera-
tively choose between different Pareto optimal solutions.
In this way, the DM can control the search for a final
solution depending on how the objective values and design
variables vary in the Pareto set. The process of choosing
the preferred solution is also often a good way to learn
about the optimization problem and the plant. For large-
scale problems, such as the optimal control problem for
cranes, it can take substantial amount of time to find a sin-
gle Pareto optimal solution using the scalarization method
and an interactive process can then be slow and tedious for
the DM. In recent research two-phase methods have been
introduced. In these methods, the Pareto frontier is first
sparsely sampled and the DM is then able to continuously
“navigate” on an approximation of the frontier in real-
time, see Eskelinen et al. (2010); Hartikainen et al. (2011);
Monz et al. (2008). However, the approaches in these
papers either require a convex Pareto frontier to yield good
approximations (which is not always the case for industrial
processes) or the computation of the approximation can be
tedious. In this paper, an approach introduced by Linder
et al. (2012) is used instead. By sampling the Pareto
frontier in a specific manner and decomposing the set of
sampled points into convex sets, it is possible to compute
an approximate Pareto frontier fast even for non-convex
Pareto frontiers, see Linder et al. (2012) for details.

There are also other papers that have studied MOO
applied to optimal control problems for cranes, see for
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instance, Deb and Gupta (2004), Logist et al. (2010), and
Sakawa and Shindo (1982).

The remainder of this paper is organized as follows: In
Section 2 the model of the grab-shift unloader crane is
presented. Section 3 shows how the MOO problem is stated
from the optimal control problem. Section 4 introduces
the developed MOO framework with a short description
of how it can be used to investigate the Pareto frontier. In
Section 5 the framework is applied to the crane optimal
control problem. Finally, some conclusions are presented
in Section 6.

2. MODELING OF A HARBOR CRANE

2.1 The Trolley and the Grab
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Fig. 1. The crane system including the trolley, the grab
and the ship, quay and hopper profile.

In principle, the crane can be described as a cart-pendulum
system, see Figure 1. The trolley and the hoist (the drum
that controls the rope length) are driven by electric motors
and it is assumed that there are inner feedback loops so
that the optimal control formulation can use the trolley
and the hoist accelerations as control inputs. With these
control inputs the model can be written as

Pt =Vt (2a)
’i}t = Q¢ (2b)
I, =v, (2¢)
Op = ay (2d)
0=w (2¢)
w= i( — 2v,.w — cos(B)a; — gsin(@)) (2f)

where p; is the trolley position, v; is the trolley speed, [, is
the rope length, v, is the hoist speed (the first derivative
of the rope length), 6 is the pendulum angle, w is the
pendulum angular velocity, a; is the trolley acceleration,
and a, is the hoist acceleration (the second derivative of
the rope length).

The grab position can be expressed as
Tp = pi + 1 sin(0) (3a)
Ypi = h — 1, cos(h) (3b)
where y,; and x, are the grab position vertically and

horizontally, respectively, and h is the height of the crane.
The forces on the trolley and in the rope are given by
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where F} is the force acting on the trolley, Fi. is the force
acting in the rope, m; is the mass of the load and m; is
the mass of the trolley. Based on (4), the power required
by the trolley and hoist motors can be written as

Pt Ft -Pl Fr

—, — =—u, (5)
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The model described by (2) — (5) has 14 variables. How-
ever, in order to improve convergence and speed of the
optimizations extra variables and equations are introduced
to split complicated expressions into parts. This is denoted
lifting and is inspired by Albersmeyer and Diehl (2010).
Because of the lifting, the dynamical model used in the op-
timization has 22 variables. Throughout the paper, these
22 variables except the control signals (a; and a,) are
concatenated to a vector denoted x(t) while the control
signals are concatenated to a vector denoted u(t).

2.2 Obstacles and Limitations

The motion and the control inputs are also subject to
limitations. The states and the controls are constrained
by simple bound constraints

—-10 <p; <30
—4.33 < v <4.33
0<1.<60
—2.33 <wv,. <3.17
T T
<< =
2 - T2
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The grab must also avoid obstacles such as the crane
structure, the ship and the quay. The height profile for
these obstacles is described the black solid line in Figure 2.
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Fig. 2. The height profile of the crane, quay and ship (black
solid), and the quadratic approximations horizontally
(blue dashed) and vertically (red dash-dotted).

In order to obtain a smooth NLP, it is desired that
the constraints are differentiable. Therefore, a smooth
approximation of the obstacles parameterized in the grab
position is derived. The limitation of this approach is
of course that it could be hard to find good smooth
approximations of rectangular obstacles. However, the
approximation need not be accurate for all positions but
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