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Abstract: The clinical significance of glycemic variability in Type 1 Diabetes is asymmetric:
a 40 mg/dl deviation below a nominal 110 mg/dl would represent a significant risk of
hypoglycemia, while the same deviation above would not cause major concern. The Blood
Glucose (BG) risk function of Kovatchev et al. [1997], which is widely used in retrospective
analysis of BG data, reflects this asymmetry as a disutility function that is quadratic in the
logarithm of BG. Interestingly, the prospective use of the same risk function in model-predictive
control can be complicated by the requirement for on-line numerical methods in computing
insulin doses that minimize risk over a given prediction horizon. In this work we propose an
empirical linear model that expresses the dynamic relationship between plasma glucose and
remote-compartment insulin in logarithmic coordinates, a model that (i) provides a natural
representation of the multiplicative effect of insulin action on glucose clearance and (ii) is such
that linear-quadratic methods applied to the model naturally reflect the BG risk function with
closed-form solutions. We demonstrate the potential of this approach through the design of
a Semi-Automated Insulin Advisor that uses continuous glucose monitoring to continuously
estimate the patient’s metabolic state, informing both episodic correction advice prompted
by the patient (for the treatment of hyperglycemia) and automated basal insulin attenuation
(for prevention of hypoglycemia). In silico pre-clinical trials show favorable performance with
respect to idealized “optimal” open-loop treatment, even in scenarios involving miscalibrated
carbohydrate ratios and misestimated carbohydrate content in meals.
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1. INTRODUCTION

Type 1 Diabetes (T1D) is a lifelong condition character-
ized by the auto-immune destruction of pancreatic beta
cells, destroying the body’s ability to produce insulin
which is necessary for glucose homeostasis. Insulin re-
placement therapy is the only proven treatment of T1D,
addressing both short- and long-term complications of the
disease. Unfortunately, insulin self-treatment represents a
significant cognitive burden for the patient, even with the
use of an insulin pump. This, along with the opportunity
for significantly improved control of Blood Glucose (BG),
has given rise to the current wave of interest in Artificial
Pancreas (AP) technology. Encouraging results have been
reported recently for proportional-integral-derivative con-
trol (cf. Weinzimer et al. [2012]), Model Predictive Control
(MPC) (cf. Hovorka et al. [2010], Cobelli et al. [2012],
Breton et al. [2012], Russell et al. [2012], Dassau et al.
[2013]), and fuzzy logic-based strategies (cf. Phillip et al.
[2013], Mauseth et al. [2013]).

One of the persistent challenges of designing closed-loop
algorithms for the control of T1D is the inherent asym-
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metry of risk associated with Blood Glucose excursions
away from euglycemia. For example, a 40 mg/dl excur-
sion below a euglycemic target of 110 mg/dl presents a
significant risk of dangerous hypoglycemia, while a 40
mg/dl excursion above 110 mg/dl lies well within the
ADA recommended range of 70-180 mg/dl and is not
particularly alarming. Acknowledging this, Parker et al.
[2000] and Dua et al. [2009] have proposed the use of
an objective function for model-predictive control that
penalizes BG deviations asymmetrically so as to emphasize
the importance of avoiding hypoglycemia, and Hernjak
and Doyle III [2005], et al. [2013] have demonstrated the
benefits of also including an asymmetric control penalty
term. While these methods have proven to be effective
in avoiding hypoglycemia in MPC settings, they have the
significant drawback of requiring on-line numerical solvers
for computing insulin doses at each stage, even when the
underlying plant model is linear.

The BG risk function of Kovatchev et al. [1997] reflects
the asymmetry of risk by (i) equating the risks of severe
hypoglycemia (20 mg/dl) and severe hyperglycemia (600
mg/dl) and (ii) similarly equating the risks associated with
endpoints of the clinically recommended [70, 180] mg/dl
target range. The BG risk function is central to the “risk
space” computational framework for retrospective analysis
of BG data (cf. Kovatchev et al. [2001]), encompassing the
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Low and High Blood Glucose Indices (LBGI and HBGI)
and the Average Daily Risk Range (ADRR), which have
proven to be predictive of future significant hypoglycemia,
hyperglycemia, and extreme glycemic variability, respec-
tively (see Cobelli et al. [2009] for a review). However,
the prospective use of the existing risk symmetrization
function as a criterion for model-based control presents
a challenge since online numerical methods are generally
required to compute optimal actions, cf. Magni et al.
[2009].

In this paper we propose an alternative “risk space” ap-
proach to control that starts with the adoption of an
empirical model, which we refer to as a “risk space con-
trol model,” that describes the relationship between the
logarithm of plasma glucose and the logarithm of remote-
compartment insulin. This representation of the model
has two major benefits: (i) it expresses the multiplica-
tive dependence on remote-compartment insulin in glucose
clearance in a linear fashion and (ii) it enables a close
approximation of the risk symmetrization as a quadratic
function of the state vector in the new coordinate system.
Using this framework we have designed a Semi-Automated
Insulin Advisor (SAIA) that uses CGM to frequently
estimate the patient’s metabolic state, informing both
episodic correction advice prompted by the patient (for the
treatment of hyperglycemia) and automated basal insulin
attenuation (for prevention of hypoglycemia). In silico pre-
clinical trials show favorable performance with respect to
idealized “optimal” open-loop treatment, even in challeng-
ing scenarios involving miscalibrated carbohydrate ratios
and misestimated carbohydrate content in meals.

2. RISK SPACE CONTROL MODEL

We capture the dynamic interaction of plasma glucose and
remote insulin in a logarithmic coordinate system through
the following model, whose parameters are fitted (below)
from transient responses to glucose challenges.

λ̇G(t) =−p1λG(t)− p2λX(t) + p3Q2(t)/BW (1)

λ̇X(t) =−p4λX(t) + p4[IP (t)/(VIBW )− Ib] (2)

where

λG(t) = ln(G(t)/Gb) and λX(t) = ln(X(t)), (3)

with G(t) [mg/dl] representing plasma glucose and X(t)
[mU/l] representing insulin acting in the remote compart-
ment. Plasma insulin IP (t) [mU] is modeled as:

İSC1(t) =−kdISC1 (t) + J (t) (4)

İSC2(t) =−kdISC2 (t) + kdISC1 (t) (5)

İP (t) =−kclIP (t) + kdISC2 (t) (6)

where J(t) [mU/min] is injected insulin. Gut glucose Q2(t)
[mg] is modeled as follows:

Q̇0(t) =−k1 (Q0 (t)−m(t)) (7)

Q̇1(t) =−k2 (Q1 (t)−Q0 (t)) (8)

Q̇2(t) =−k3 (Q2 (t)−Q1 (t)) (9)

where m(t) [mg/min] is ingested carbohydrates. The pa-
rameters p1, p2, p3, p4, VI , and BW , some of which are

patient-specific, have interpretations similar to those in the
standard minimal model of glucose kinetics, cf. Bergman
et al. [1979]. The gut and insulin transport parameters
k1, k2, k3, kd, kcl are also patient-specific. Basal glucose
concentration Gb is set to 112.5 [mg/dl] as a fixed ref-
erence. Ib is calculated from the steady state value of
IP (t)/(VIBW ) with J(t) fixed at the patient’s average
basal rate.

The method for estimating the parameters of the risk
space control model is described in Jiang et al. [2013]
(paper forthcoming). A subset of the parameters of the
model (p2, p3, kd, and the gut transport model parameters)
are adjusted to represent the specific characteristics of an
individual patient, and the rest are held fixed as “popula-
tion” values. Generally, the parameters of the model are
chosen to maximize four-hour prediction accuracy. As a
first step, using the Virginia/Padova Type 1 Simulator as
a reference, we have tuned all of the parameters of a “pop-
ulation average” model designed to maximize average pre-
diction accuracy across all of the adult in silico subjects.
Next, after fixing the population-average parameters, we
computed optimal multiplier values for the individualized
parameters. The tuning process uses 2x2 design, with (i)
two meal scenarios (first, a meal with a mealtime bolus,
and second, the same meal/bolus followed by a correction
bolus one hour later) and (ii) two prediction windows
(first, between 1 and 5 hours following a meal, and second,
between 4 and 8 hours following a meal). The optimization
criterion that we used for individualization (i) rewards
prediction accuracy within each setting of the 2x2 design
but (ii) also heavily penalizes mismatch in accuracy across
settings. After computing the optimal multiplier values for
each in silico subject, we fitted the optimized multipliers
to a nonlinear functions of CHO:I and ISF values.

Fig. 1 illustrates that with a cost function that is quadratic
in the state vector (λG(t), λX(t))∗) (specifically, 4405.6 ·
[ln(G(t)/Gb)]

2), cf. red trace, we can closely approximate
the BG risk function of Kovatchev et al. [1997], cf. blue
trace. (The green trace in the figure illustrates the dif-
ficulty of approximating the BG risk function with a
quadratic function ofG(t), in this case [G(t)−Gb]]2.) Thus,
the risk space control model provides a linear-quadratic
framework that retains the benefits of the risk space frame-
work, with a computationally tractable model. While we
believe that this framework has broad applicability in both
advisory and closed-loop algorithms for the treatment of
diabetes, we illustrate the use of the framework in the
design and in silico evaluation of the Semi-Automated
Insulin Advisor in which the risk space control model
informs model-predictive bolus advice on demand.

3. SEMI-AUTOMATED INSULIN ADVISOR

As an illustrative use of the risk space control model,
we present a Semi-Automated Insulin Advisor (SAIA),
which as shown in Fig. 2 consists in two main modules:
an On-Demand Bolus Advisor and Meal-Informed Power
Brakes, both of which continuously process insulin his-
tory, CGM data, and meal information. The On-Demand
Bolus Advisor is invoked episodically by the patient and
provides correction bolus advice using a model-predictive
approach (using the risk space control model). The Meal-
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