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Abstract: The primary goal of a low glucose suspend system is to reduce the risk of overnight 
hypoglycemia (low blood glucose) in individuals with type 1 diabetes by reducing/suspending insulin 
infusion. We have developed a Kalman filter-based algorithm, combined with a number of safety rules, 
to implement a predictive low glucose suspend system that shuts off an insulin pump based on a 
prediction of hypoglycemia 30-70 minutes in the future. This system has been studied in over 2,000 
nights in an outpatient-home environment. In this paper, based on an analysis of this data, we isolate the 
effects of the individual rules in part by simulating their removal from the existing data. Specifically, we 
decompose the basal insulin into small boluses and, using a model of insulin pharmacodynamic action 
(the time effect of insulin on blood glucose), alter the real data corresponding to the addition or removal 
of basal insulin via simulation. Our results show that limiting the total suspension to 180 minutes per 
night prevents excessive suspension in cases where the average calibration is an excessive 58 mg/dl, 
above the mean of 18 mg/dl. Further, we also show that a simple threshold algorithm that suspends below 
100 mg/dl if the glucose level is flat or falling, is comparable in performance. Lastly, we show that the 
Kalman filter at the heart of this algorithm reduces the time spent below 70 mg/dl by 50% at the expense 
of a mean rise of 12 mg/dl in morning glucose levels. 
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1. INTRODUCTION 

Type 1 diabetes (T1D) is an autoimmune disease that directly 
destroys the body’s ability to produce insulin and indirectly 
the body’s ability to regulate blood glucose concentrations.  
Individuals with T1D must use either multiple daily 
injections of insulin (one bolus of long-acting insulin each 
day, and boluses of rapid-acting insulin at meal/snack time 
and when blood glucose needs to be reduced), or continuous 
infusion of rapid-acting insulin using an insulin pump. While 
insulin therapy can lead to lower blood glucose levels and 
reduce the risk of complications due to high blood glucose, 
there is an underlying risk of hypoglycemia (low blood 
glucose) if insulin is over-administrated. Indeed, one of the 
greatest fears of a parent of a child with T1D is extended 
overnight hypoglycemia, which could lead to a coma or, in 
rare cases, death (known as “dead in bed” syndrome). The 
development of continuous glucose monitoring (CGM) 
technology, allowing a near continuous measurement of 
glucose levels, enabled the use of alarms to warn individuals 
of low (or high) glucose levels. Unfortunately, these alarms 
have been found to be insufficient, since individuals and their 
caregivers often sleep through the alarms (Buckingham et al., 
2005). 

Low glucose suspend (LGS) or pump shut-off (PSO) systems 
have been developed specifically to shut-off pumps to reduce 
the risk of hypoglycemia, based on real-time CGM signals; 

they are also a natural first step towards the development of a 
fully closed-loop artificial pancreas (Kowalski, 2009; Harvey 
et al., 2010; Cobelli et al., 2011; Bequette, 2012). Initial LGS 
systems were threshold-based (the pump is turned off when 
the threshold is violated), while much current effort has been 
on predictive low glucose suspend (PLGS) systems that turn-
off a pump when a hypoglycemic event is predicted to occur 
(usually 30-70 minutes in the future; Bequette, 2014). 

The PLGS algorithm that we have developed involves the use 
of a Kalman filter predict future glucose values, combined 
with a set of rules to reduce the risk of prolonged periods of 
pump shut-off. This algorithm was first tested in in-clinic 
studies (Cameron et al., 2012), followed by extensive out-
patient (in-home) studies (Maahs et al., 2014). The objective 
of this paper is to analyze the results from over 2,000 nights 
of out-patient studies to understand the effect of various 
algorithm parameters and rules on the blood glucose control. 
We first review the results of the outpatient study, then 
describe our hybrid experiment/simulation approach, and 
finally discuss the results. 

2. OUTPATIENT STUDY DATA 

The data used in this paper comes from an outpatient clinical 
trial of the described pump suspension algorithm. The idea is 
that by predicting impending hypoglycemia and suspending 
insulin delivery that the body’s natural release of glucose into 
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the blood stream would mitigate or prevent the 
hypoglycemia. For each of the 45 patients there was a run-in 
phase where the algorithm was enabled each night and then a 
42-night phase where the algorithm was randomly and 
blindly enabled or disabled. This design isolated the 
effectiveness of the algorithm from any behavioural 
adjustments the patients might make for a final system. This 
resulted in 925 control nights and 1125 intervention nights. 

The system consisted of a continuous glucose monitor 
(CGM) and an insulin pump communicating with a bedside 
laptop computer that contained the pump suspension 
algorithm. Each of the nights has at least 4 hours of CGM 
data post activation, a morning blood glucose measurement, 
records of any snacks from bedtime until morning, records of 
exercise in the previous day, basic demographics, and a full 
insulin history. 

A typical intervention night is shown in Fig. 1. The x’s 
indicate the glucose concentration as measured by the 
continuous glucose monitor and provided to the algorithm.  
When these trend downwards at the start of the dataset the 
algorithm triggers suspensions, as indicated by the orange 
triangles and the zeroing out of the basal rate. Later in the 
evening two periods of sensor noise also trigger pump 
suspensions. Eliminating those is the subject of further study. 

 
Fig 1. Sample Intervention Night. The top plot shows the 
CGM values (x), reference/calibration values (triangle), and 
bounds of desirable glucose values (horizontal line). The 
bottom plot shows the basal insulin (line) and boluses 
(bubble). The vertical line is the time when the system was 
activated. 

3. SIMULATOR 

Running a separate clinical trial to test the effect of a change 
to or removal of a rule would be prohibitive in terms of cost, 
and noisy due to inter- and intra-patient variability. Instead 
we simulate from the existing data. Specifically, we assume 
that the patients’ insulin sensitivity can be calculated 
according to the 1800-rule: 

  

which is a common heuristic used in clinical practice. 
is the patients’ total daily insulin dose in units/day. Then we 
use an average of published insulin time action profiles 
(Frohnhauer et al., 2001; Heinemann and Steiner, 1997; Swan 

et al., 2009) shown in Fig. 2, to approximate the effect of any 
insulin subtracted or added. The multiplication of with the 
curve in Fig. 2 represents the convolution model of insulin 
action, . Given a glucose and insulin profile represented by 
glucose values  and  at regular time intervals the simulator 
morphs the original profile into a simulated ones by looping 
over the following steps. 1)  where  is 
the ith element of the vector  and  is a controller that 
determines what new input to command given the past 
history of inputs  and outputs . 2)  3)

 4)  which simulates 
the effect of the changed insulin administration and 5)

. After each repetition of the above steps the  and 
 vectors represent the simulated value of glucose  

corresponding to the provided insulin . This simple 
explanation ignores issues corresponding to vector lengths 
and missing glucose readings that can be easily fixed in 
practice. 

This simulator only makes assumptions about insulin action. 
It does not make any assumptions about meals, exercise, 
sleep, or anything else. Consequently, the inaccuracy of the 
simulator stems only from estimating the effects of large 
changes to the administered insulin. For the vast majority of 
simulated cases the glucose levels are changing only within 

 10 mg/dl, a range for which the assumption of locally 
linear insulin action likely holds.  

An example simulation for the base algorithm and one where 
the prediction horizon is extended from 30 to 70 min is 
shown in Fig. 3. Here, the trial night begins at the vertical 
black line. The blue is the simulated closed-loop insulin 
delivery and resultant glucose values. Increasing the 
prediction horizon leads to earlier suspension and so higher 
glucose values and less hypoglycemia.  

Because we can get negative values in simulation when 
removing particularly important rules, we use a modified risk 
measure that is fitted to the Kovatchev risk profile, but that 
allows for negative values (Cameron, 2010; Cameron et al., 
2011). 

 

 
Fig. 2. Cumulative Insulin Action vs. Time 
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