Accepted Manuscript

Improvement of the cavity expansion theory for the measurement of strain softening in over consolidated saturated clay

Tao Cheng, Zhongyuan Yu, Jun jie Zheng, Jianjun Du, Yi Zhang, Akhil Garg, Ankit Garg

PII: S0263-2241(18)30082-4

DOI: https://doi.org/10.1016/j.measurement.2018.01.069

Reference: MEASUR 5244

To appear in: *Measurement*

Received Date: 27 July 2017 Revised Date: 30 January 2018 Accepted Date: 31 January 2018

Please cite this article as: T. Cheng, Z. Yu, J.j. Zheng, J. Du, Y. Zhang, A. Garg, A. Garg, Improvement of the cavity expansion theory for the measurement of strain softening in over consolidated saturated clay, *Measurement* (2018), doi: https://doi.org/10.1016/j.measurement.2018.01.069

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Improvement of the cavity expansion theory for the measurement of strain softening in over consolidated saturated clay

CHENG Tao^{1,2}, YU Zhongyuan^{2,3}. ZHENG Jun jie¹, DU Jianjun^{2,3} ZHANGYI*^{2,4}, GARG Akhil⁵, GARG Ankit⁵

^{1.}School of Civil Eng. & Mech. Eng., Huazhong University of Science and Technology, Wuhan 430074, China; ^{2.}School of Civil Engineering, Hubei Polytechnic University, Huangshi 435003, China

³School of Civil Engineering, China Three Gorges University, Yichang 443000, China

⁴Department of Civil and Earth Resources Engineering, Kyoto University, Japan

⁵ Department of Civil Engineering, Shantou University, China

Abstract: In this paper, considering the strain softening effect, the cavity expansion theory is improved for over-consolidated soil. Based on the theory of cavity expansion model, the soil around the pile is divided into three zones namely damage zone, plastic zone and elastic zone. This is divided according to the distance from pile. Considering the strain soften effect of over-consolidated soil, cavity cylinder balance equation is modified in the damage zone. The residual shear strength is introduced instead of the conventionally adopted peak shear strength. The effect of shear stress on excess pore water pressure is ignored in the plastic zone. With this development, large deformation plasticity theory was applied to modify the equation. Expressions and relations were derived to consider pile expansion stress of the damaged zone, excess pore water pressure, the radius of the damaged zone and plastic zone. Based on newly proposed model, it can be concluded that (1) With the increase of the pile expansion stress, plastic flow and strain softening appear in the damage zone, and there are rotations of principal stresses; (2) For the normally consolidated soil, the radius of the damage zone is about

^{*}Corresponding author: ZhangYi (Y. Zhang) Email: zhang_yi87@163.com

Download English Version:

https://daneshyari.com/en/article/7121611

Download Persian Version:

https://daneshyari.com/article/7121611

Daneshyari.com