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Abstract: Optimal path following for robots considers the problem of moving along a
predetermined Cartesian geometric end effector path (which is transformed into a predetermined
geometric joint path), while some objective is minimized: e.g. motion time or energy loss. In
practice it is often not required to follow a path exactly but only within a certain tolerance. By
deviating from the path, within the allowable tolerance, one could gain in optimality. In this
paper, we define the allowable deviation from the path as a tube around the given geometric
path. We then search for the optimal motion inside the tube. This transforms the path following
problem to a tube following problem. In contrast to the (time or energy) optimal path following
problem, the tube following problem is not convex. However, we propose a problem formulation
that can still be solved efficiently, as will be illustrated by some numerical examples.

1. INTRODUCTION

Robot path following problems determine the motion of
a robot along a predetermined geometric Cartesian end
effector path without any preassigned timing information.
Common practice is to transform the Cartesian path into
a joint path using the inverse kinematics. Path following
is often considered to be the low level stage in a decoupled
motion planning approach (Bobrow et al., 1985; Shin and
Mckay, 1985; Van Loock et al., 2013a), since the motion
planning problem (path planning and following) is difficult
and highly complex to solve in its entirety (von Stryk
and Bulirsch, 1992; Diehl et al., 2005). First, a high
level path planner determines a geometric path, ignoring
the system dynamics but taking into account geometric
path constraints. Second, an optimal trajectory along
the geometric path is determined that takes the system
dynamics and limitations into account. Since the dynamics
along a geometric path can be described by a scalar
path coordinate s and its time derivatives (Bobrow et al.,
1985; Shin and Mckay, 1985; Van Loock et al., 2013a),
the decoupled approach simplifies the motion planning
problem to great extent. Furthermore, the path following
problem in joint space for a robotic manipulator with
simplified constraints can be cast as a convex optimization
problem (Verscheure et al., 2009a,b). This guarantees
efficient computation of globally optimal solutions.

In many applications, the Cartesian geometric end effector
path planned by the path planner does not need to be
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followed exactly but within certain position and orienta-
tion tolerances. Typical examples are milling robots where
some geometrical tolerance on the workpiece is given. By
deviating from the predetermined path, within the allow-
able tolerance one could gain in optimality.

In (Van Loock et al., 2013b) an optimal path following
formulation is presented that provides freedom on the joint
path. This freedom on the joint path then results in free-
dom on the Cartesian path. However, for the applications
considered in this paper, where the tolerances are specified
in Cartesian space, this formulation should be extended
because Cartesian tolerances cannot be transformed back
into joint tolerances for robotic manipulators in general.

This paper presents a method that combines freedom on
the joint paths, as proposed in (Van Loock et al., 2013b),
with constraints on the end-effector Cartesian position and
orientation which correspond to the given end effector
tolerances. The Cartesian position constraints translate
into a tube around the given geometric Cartesian path,
to which the end effector is bounded. The freedom on the
joint paths is taken sufficiently large such that it is not the
restricting factor in the optimization.

The resulting tube following problem is nonconvex. In this
paper we propose a problem formulation, starting from
the path following formulation, that can still be solved
efficiently using a standard interior point solver.

This paper is organised as follows. Section 2 reviews the
path following problem formulation given in (Verscheure
et al., 2009a). Then, Section 3 extends this path following
problem to a tube following problem. Here we review the
joint path parametrisation given in (Van Loock et al.,
2013b) and we define tube constraints on the end effector
position and constraints on the orientation of the end
effector. Section 4 illustrates the proposed framework with
some numerical examples of time-optimal and energy-
optimal tube following respectively.
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Throughout the paper we will use the following shorthand
notations for the derivatives of a function f(s(t)): ḟ =
df
dt , f̈ = d2f

dt2 , f
′ = ∂f

∂s , f
′′ = ∂2s

∂s2 where t indicates time and
s the path coordinate. Furthermore, we indicate scalars
with a lower-case letter, e.g. n, vectors with a bold lower-
case letter, e.g. q, and matrices with an upper-case letter,
e.g. M . qi denotes the i-th element of q.

2. OPTIMAL PATH FOLLOWING PROBLEM
FORMULATION

Consider a robotic manipulator with n degrees of freedom
and joint angles q ∈ Rn. The equations of motion are given
by

τ = M(q)q̈ + C(q, q̇)q̇ + g(q) = ψ(q, q̇, q̈), (1)

where τ ∈ Rn are the joint torques, M ∈ Rn×n is
the mass matrix, C ∈ Rn×n is a matrix, linear in q̇,
accounting for Coriolis and centrifugal effects and, g is a
vector accounting for gravity and other position dependent
torques.

Consider a prescribed geometric path q(s) as a function of
a scalar path coordinate s, given in joint space coordinates.
The time dependence of the path is determined through
s(t). Without loss of generality it is assumed that the
trajectory starts at t = 0, ends at t = T and, 0 = s(0) ≤
s(t) ≤ s(T ) = 1. It is furthermore assumed that we always
move forward along the path, i.e. ṡ(t) ≥ 0,∀t ∈ [0, T ].

Using the chain-rule we rewrite joint velocities and accel-
erations as

q̇(s) = q′(s)ṡ and, q̈(s) = q′′(s)ṡ2 + q′(s)s̈.

Substitution of the above equations in (1) projects the
equations of motion onto the path (Verscheure et al.,
2009a):

τ (s(t)) = ψs
(
s(t), ṡ(t)2, s̈(t), q(s(t)), q′(s(t)), q′′(s(t))

)
.

Now, by using the same transformation of variables as
in (Verscheure et al., 2009a; Van Loock et al., 2013a) we
transform the problem from a time t dependent problem
into a path s dependent problem where we use s as an
independent variable instead of time t.

ṡ2 = b(s), where s̈ =
1

2
b′(s).

This results in the following dynamics

τ (s) = ψb (s, b(s), b′(s), q(s), q′(s), q′′(s)) .

2.1 Time-optimal path following

The total motion time is given by

T =

∫ T

0

1dt =

∫ 1

0

1

ṡ
ds =

∫ 1

0

1√
b(s)

ds.

The time-optimal path following problem is then formu-
lated as

minimize
b(·),τ (·)

∫ 1

0

1√
b(s)

ds

subject to b(0) = ṡ20, b(1) = ṡ2T , b(s) ≥ 0

τ (s) = ψb (s, b(s), b′(s), q(s), q′(s), q′′(s))

τ− ≤ τ (s) ≤ τ+

for s ∈ [0, 1].
(2)

Once the optimal solution for b(·), τ (·) is obtained, the
relation between path coordinate and time can be obtained
from the relation

t(s) =

∫ s

0

1√
b(σ)

dσ.

Note that optimization problem (2) is a fixed end-time
problem due to the transformation from time domain t to
path domain s. In general this is much easier to solve than
a free end-time problem due to the strongly non-linear
dependence of the solution with varying end-times.

This time-optimal path following problem (hence fixed
q(s)) is convex for a simplified robot and simple task
constraints (Verscheure et al., 2009a; Debrouwere et al.,
2012). In the extension to tube following we will allow
deviations from the fixed joint path, hence q(s) is free as
in (Van Loock et al., 2013b) and the optimization problem
is nonconvex. The proposed problem formulation, given in
the following section, results in an numerical optimization
problem which can be solved efficiently using standard
nonconvex solvers.

2.2 Energy-optimal path following

In (Verscheure et al., 2009a) a trade-off is made between
thermal energy losses and motion time. Hence energy loss
minimization results in larger motion times. The thermal
losses are dominated by the electrical resistive energy loss
for each joint i which is proportional to integral of the
square of the joint motor torque. The total thermal losses
are then proportional to:

n∑
i=1

∫ T

0

τ 2
i

τ 2
+,i

dt =

n∑
i=1

∫ 1

0

τ 2
i

τ 2
+,i

√
b(s)

ds, (3)

where τ 2
+,i is used as a normalization factor.

It can be shown (Boyd and Vandenberghe, 2004) that
x2/
√
y is a convex function of (x, y), for y ≥ 0, hence

the electrical energy losses are convex.

Another approach could be to only minimize the energy
losses (3) while constraining the motion time to some max-
imal value Tm. The energy-optimal path following problem
is similar to the time-optimal path following problem (2),
however it has a different objective function (3), and an

additional constraint
∫ 1

0
b(s)−1/2ds ≤ Tm. This energy-

optimal approach extends easily to tube following. The
extra freedom (deviation from the Cartesian path within
the tube) allows the robot to deviate from the nominal
path to minimize the energy losses while preserving the
motion time T ∗0 of the time-optimal path following prob-
lem. Hence Tm = T ∗0 .

The following section extends the time-optimal path fol-
lowing problem to time-optimal tube following problems.
The energy-optimal tube following problem derivation is
straightforward.

3. FROM PATH FOLLOWING TO TUBE
FOLLOWING

Generally a robot task is specified in Cartesian coordi-
nates of the end effector pose y(s) = (x, y, z, φ, θ, ψ)T =
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