Accepted Manuscript

Measurement Uncertainty Evaluation in Whiplash Test Model via Neural Network and Support Vector Machine-Based Monte Carlo Method

Shenlong Wang, Xiaohong Ding, Daye Zhu, Huijie Yu, Haihua Wang

PII: S0263-2241(18)30078-2

DOI: https://doi.org/10.1016/j.measurement.2018.01.065

Reference: MEASUR 5240

To appear in: *Measurement*

Received Date: 9 August 2017 Revised Date: 31 October 2017 Accepted Date: 30 January 2018

Please cite this article as: S. Wang, X. Ding, D. Zhu, H. Yu, H. Wang, Measurement Uncertainty Evaluation in Whiplash Test Model via Neural Network and Support Vector Machine-Based Monte Carlo Method, *Measurement* (2018), doi: https://doi.org/10.1016/j.measurement.2018.01.065

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Measurement Uncertainty Evaluation in Whiplash Test Model via Neural Network and Support Vector Machine-Based Monte Carlo Method

Shenlong Wang¹*, Xiaohong Ding¹*, Daye Zhu¹, Huijie Yu¹, Haihua Wang²

School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093,

P. R. China

²Yanfeng Adient Seating Co., LTD., Shanghai 201315, P. R. China *Corresponding Author. Email: shenlongwang@usst.edu.cn (S.W.); dingxh@usst.edu.cn (X.D.)

Abstract

Uncertainty evaluation is playing an increasingly important role in assessing the performance, safety and reliability of complex physical systems in the absence of adequate amount of experimental data. This paper presents a quantification of the measurement uncertainty in whiplash test models. We researched the analysis techniques of uncertainty for the complex nonlinear systems, as well as the advantages and disadvantages of the proposed methodology. By introducing the finite element analysis, we verified the consistency between the whiplash test, the calibration test and the simulation results of them. We also studied the influential factors and their probability density functions and presented the sensitivity analysis of whiplash test model. Based on the Latin hypercube sampling, we utilized the back propagation neural network (BPNN) and the least squares support vector machine (LS-SVM) to establish the mathematical models. Furthermore, the accuracies of two models are validated. Comparing with the results acquired by the guidance of uncertainty measurement and the Bayesian method, we demonstrate that the LS-SVM-based Monte Carlo method is the most appropriate technique for the evaluation of whiplash test uncertainty.

Keywords: Measurement uncertainty evaluation; Whiplash test; Back propagation neural network; Least squares support vector machine; Monte Carlo method

1. Introduction

Whiplash-associated neck injuries [1-5] are attracting more and more attention of the vehicle safety

Download English Version:

https://daneshyari.com/en/article/7121728

Download Persian Version:

https://daneshyari.com/article/7121728

<u>Daneshyari.com</u>