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Abstract: This paper proposes an alternative extremum seeking control design technique for
the solution of real-time optimization control problems. The technique considers a proportional-
integral approach that avoids the need for a time-scale separation in the formulation of the
ESC. It is assumed that the equations describing the dynamics of the nonlinear system and
the cost function to be minimized are unknown and that the objective function is measured.
The dynamics are assumed to be asymptotically stable and relative order one with respect to
the objective function. The extremum-seeking problem is solved using a time-varying parameter
estimation technique.
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1. INTRODUCTION

Extremum-seeking control (ESC) has been the subject
of considerable research effort over the last decade. This
approach, which dates back to the 1920s Leblanc [1922], is
an ingenious mechanism by which a system can be driven
to the optimum of a measured variable of interest Tan
et al. [2010]. The revived interest in the field was primarily
sparked by Krstic and co-workers who provided an elegant
proof of the convergence of a standard perturbation based
extremum seeking scheme for a general class of nonlinear
systems. The main drawback of ESC is the lack of transient
performance guarantees. As highlighted in the proof of
Krstic and Wang Krstic and Wang [2000], the stability
analysis relies on two components: 1) an averaging analysis
of the persistently perturbed ESC loop and 2) a time-
scale separation of ESC closed-loop dynamics between the
fast transients of the system dynamics and the slow quasi
steady-state extremum-seeking task.

Over the last few years, many researchers have considered
various approaches to overcome the limitations of ESC. In
Krstic [2000], the performance limitations associated with
ESC were considered in detail. The non-local properties on
ESC was studied in Tan et al. [2006]. This work extends
the work in Krstic and Wang [2000] by considering the
case where the fast dynamics can be assumed to be uni-
formly global asymptotically stable along the equilibrium
manifold. In Adetola and Guay [2007], Guay et al. [2004]
and Cougnon et al. [2011], an alternative ESC algorithm
is considered where an adaptive control and estimation
approach is used. The key aspect of this approach is that
the equilibrium map is parameterized and the parame-
ters are estimated with the help of a tailored adaptive
estimation technique. The results in Nesic et al. [2010]
unify the approaches based on singular perturbation and
parameter estimation by considering the case where the

objective function is parameterized in a known fashion. A
three-time scale approach is proposed to establish the com-
bined adaptive estimation and extremum seeking control
algorithms. Recent work reported in Ghaffari et al. [2012]
and Moase et al. [2010] have proposed a Newton-based
extremum-seeking technique that provides an estimate of
the inverse of the Hessian of the cost function. This tech-
nique can effectively alleviate the convergence problems
associated with the increase of the gain of the Newton
update. Other alternative techniques such as proposed
Zhang and Ordóñez [2009] and Zhang and Ordóñez [2012]
make use of sampled gradient measurements to improve
the convergence properties of ESC techniques that imple-
ment numerical optimization techniques. A sliding-mode
approach is presented in Fu and Özgüner [2011].

Although the limitations associated with the tuning of
ESC is generally well understood, the limitations associ-
ated with the two time-scale approach to ESC remains
problematic. Under the two time-scale assumption, the
optimization operates at a quasi steady-state, or slow,
time-scale such that the search for optimal operating con-
ditions does not affect the process dynamics. To over-
come the time-scale separation, one must incorporate some
knowledge of the transient behaviour of the process dy-
namics. In the case where a model is available, one can
use adaptive extremum seeking technique as proposed in
Guay and Zhang [2003] to stabilize a nonlinear system to
the unknown optimum of a known but unmeasured cost
function. If a model is not available but similar systems are
available, the use of multi-unit extremum seeking control
techniques Srinivasan [2007] can be used to steer both
systems in a neighbourhood of the unknown optimum.
Both classes of techniques can solve the steady-state op-
timization ESC problem without the need for time-scale
separation. In Scheinker and Krstic [2013], Lie bracket
averaging techniques are considered to stabilize unknown
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dynamical systems using ESC. The approach does not
explicitly rely on the need for time-scale separation but
it requires a known CLF of the unknown control system.

ESC problems cannot be currently solved in the absence
of time-scale separations if explicit process models or mul-
tiple identical units are not available. This paper attempts
to bridge this gap in the application of ESC. It proposes
a proportional-integral ESC design technique. This tech-
nique can be interpreted as a generalization of the stan-
dard approach where the integral action corresponds to
the standard ESC control task used to identify the steady-
state optimum. The proportional control action is designed
to ensure that the measured cost function is optimized
instantaneously. The approach considers an alternative
parameterization of the ESC problem in which the rate of
change of the output is parameterized directly without the
need to invoke a time-scale separation argument. Under
suitable assumption on the dynamics of the system, this
action can be shown to minimize the cost over short times
while reaching the optimum steady-state conditions.

The paper is organized as follows. A brief description of
the ESC problem is given in section 2. In section 3, the pro-
posed ESC formulation is presented for a known cost func-
tion and process dynamics. The proposed proportional-
integral ESC controller is described in section 4. A simula-
tion example is presented in 5 followed by brief conclusions
in 6.

2. PROBLEM DESCRIPTION

Consider a nonlinear system

ẋ= f(x) + g(x)u (1)

y = h(x) (2)

where x ∈ Rn is the vector of state variables, u is the vector
of input variables taking values in U ⊂ Rp and y ∈ R is
the variable to be minimized. It is assumed that f(x) and
g(x) a smooth vector valued functions of x and that h(x)
is a smooth function of x.

The objective is to steer the system to the equilibrium
x∗ and u∗ that achieves the minimum value of y(= h(x∗)).
The equilibrium (or steady-state) map is the n dimensional
vector π(u) which is such that:

f(π(u)) + g(π(u))u = 0.

The equilibrium cost function is given by:

y = h(π(u)) = `(u) (3)

Thus, at equilibrium, the problem is reduced to finding the
minimizer u∗ of y = `(u∗). Let D(u) be a neighbourhood
of the steady-state x = π(u).

Some additional assumptions are required concerning the
cost function h(x).

Assumption 1. The cost h(x) is such that

(1) ∂h(x∗)
∂x = 0

(2) ∂2h(x)
∂x∂xT > αI, ∀x ∈ Rn

where α is a strictly positive constant.

Note that, in contrast to standard ESC, convexity of the
cost function h(x) is required. We also require the following
properties for the dynamics:

Assumption 2. The dynamics (1) are such that:

(1) the cost function h(x) decreases in the direction of
f(x):

∂h

∂x
f(x) +

∂h

∂x
g(x)u ≤ −α‖x− π(u)‖2, ∀x ∈ D(u),

(2) the matrix valued function g(x) is full rank ∀x ∈
D(u),

∀u ∈ U .

Assumption 2 states that h is non-decreasing in along the
vector field f(x) + g(x)u over some neighbourhood of the
steady-state manifold x = π(u) at a fixed value of the
input u. It also states that the cost function is relative
order 1 in a neighbourhood of the origin.

Finally, we will require the following additional assumption
concerning the steady-state cost function `(u).

Assumption 3. The equilibrium steady-state map `(u) is
such that

∇u`(u)(u− u∗) ≥ αu‖u− u∗‖2

for some positive constant αu ∀u ∈ U .

3. EXTREMUM SEEKING CONTROLLER WITH
FULL INFORMATION

In this section, we propose the extremum-seeking control
approach that will form the basis of the development
in later sections. Let us first consider the cost function
y = h(x) and compute its time derivation:

ẏ = Lfh+ Lghu (4)

where Lfh and Lgh are the Lie derivatives of h(x) with
respect to f(x) and g(x), respectively. The Lie derivative
is the directional derivative of the function h(x) given by:

Lfh =
∂h

∂x
f, Lgh =

∂h

∂x
g.

By the relative order assumption it follows that Lgh 6= 0
in a neighbourhood of the unknown optimum x∗.

We propose the following controller:

u = −kLgh+ û (5)

where û is a steady-state bias term to be estimated. Let
the optimal steady-state input be given by u∗. The error
in the deviation bias is denoted by ũ = u∗ − û. Pose the
function

V = y +
1

2
ũT ũ

Its time derivative is given by:

V̇ = Lfh− k‖Lfg‖2 + Lghû− ũ ˙̂u.

Let ˙̂u = −Lgh. Upon substitution of ũ = u∗ − û, one
obtains:

V̇ = Lfh− k‖Lfg‖2 + Lghu
∗

By assumption, it follows that:

V̇ ≤ −α‖x− π(u∗)‖2 − k‖Lgh‖2

Since g(x) is everywhere full rank and x∗ is the unique
point where ∇xh(x∗) = 0. Thus the system reaches the
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