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Abstract: This paper presents an extension to the classical gradient-based extremum seeking
control for the case when the disturbances responsible for changes in the extremum of a selected
performance function are available for measurement. Based on these additional measurements,
an adaptive extremum seeking disturbance feedforward is designed that approximates the
unknown, static mapping between the disturbances and the optimal inputs. For this purpose,
orthogonal, multivariate Tchebyshev polynomials are used. The feedforward enables the ex-
tremum seeking to be conducted in the proximity of the extremum thus yielding improvements
both in terms of accuracy and increased convergence speed compared to the traditional scheme.
Simulation results given for a turbine driven electrical generator system demonstrate the benefits
of the presented design.
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1. INTRODUCTION

In a wide variety of control applications the aim is to
operate a physical system or a process in the vicinity
of an extremum (optimal set-point) of some performance
function. Very often the performance function is measur-
able but unknown to the designer, in terms of its exact
analytical dependency on the system parameters (opti-
mizing inputs). In such cases Extremum Seeking Control
(ESC) techniques can be used to achieve and maintain
the operation of a system under optimal conditions. Nu-
merous reports of successful implementations of ESC can
be found in literature, e.g., for improving continuously
variable transmission efficiency as in Van der Meulen et al.
[2012], or for Maximum Power Point Tracking (MPPT)
in photovoltaic (PV), fuel cell and wind energy systems,
see Zazo et al. [2012], Bizon [2010] and Pan et al. [2008],
respectively.

Extremum Seeking Control was first investigated in the
1950s and 1960s as a control framework for finding a
minimum or a maximum value of a static map, see Tan
et al. [2006]. However, a rigorous stability proof for the
“classical” ESC with a general nonlinear dynamical plant
arrived only at the beginning of the past decade, see Krstić
and Wang [2000]. Since then there has been a revival of
interest and a steady development in the field. Today ESC
encompasses various online optimization techniques which
can roughly be split into gradient-based as in Krstić and
Wang [2000], and gradient-free methods, e.g., sliding mode
ESC as in Korovin and Utkin [1974]. However, hybrid
algorithms such as the Simplex Guided ESC by Zhang and
Gans [2012] – a combination between a local, gradient-
based search and a global, gradient-free direct search
algorithm, also do exist. Furthermore, one can distin-
guish between numerical optimization-based, parametric
and classical-gradient ESC. The classical gradient-based
approach, as in Krstić and Wang [2000], Moura and Chang
[2010] and Van de Wouw et al. [2012], is the most popular
of all ESC schemes due to its simple implementation and a
proof of local convergence. It relies on the fact that a sig-

nal proportional to the local gradient of the performance
function (w.r.t. to the optimizing input) can be extracted
from a product between the sinusoidal input perturbation
and the resulting system’s response. A simple integration
of the gradient estimate (or its negation) is then sufficient
to continuously steer the system toward the extremum.

Overall, the classical gradient-based ESC schemes demon-
strate good seeking behavior when the extremum is static.
However, often the optimal operating point can also
change over time. For instance, shifts in solar irradiation
and wind speed can cause fluctuations in the optimal
PV voltage and the optimal wind turbine rotation speed,
see Kumari and Babu [2012] and Munteanu et al. [2009].
To account for such variations in the extremum, Krstić
[2000] proposed an extension to the original algorithm by
introducing a dynamic compensator into the extremum
seeking loop. Still, the solution applies only for the case of
changes with known dynamics that can be captured by a
linear time-invariant system (e.g., a double integrator).

However, in some practical applications the disturbances
leading to changes in the optimal input/extremum value
of a selected performance function are measurable. In this
paper, we show how this additional information can be
used to achieve faster and more accurate convergence of
the classical gradient-based ESC scheme. In particular, we
use the classical gradient-based ESC both to search for
a new extremum and to identify the mapping between
the disturbances and the optimal inputs. The mapping
is approximated by means of multivariate Tchebychev
polynomials whose coefficients are adaptively updated us-
ing the latest estimate of the optimal input. Based on
the approximate mapping, the proposed solution, i.e., the
Adaptive disturbance feedforward ESC (AESC), is able
to conduct the search in the close vicinity of the ever-
changing extremum. This in turn shortens the convergence
times and improves the overall extremum tracking per-
formance. Note that the proposed method is not limited
to the classical-gradient ESC but can also be used in
combination with other similar ESC algorithms, such as
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those by Ghaffari et al. [2012], Moase et al. [2010] and
Moase and Manzie [2012].

In summary, the main contributions of this paper are as
follows. The paper presents a solution to the problem of
tracking an unknown, time-varying extremum of a cer-
tain performance function. This is achieved by extending
the original classical gradient-based ESC scheme with an
adaptive disturbance feedforward based on multivariate
Tchebychev polynomials. The extension greatly enhances
the extremum tracking performance as demonstrated in a
turbine driven electrical generator system case study.

This paper is organized as follows. Section II provides the
problem formulation, followed by the description of the
proposed ESC scheme in Section III. Section IV contains
representative simulation results from the case study on
a turbine driven electrical generator system. Finally, the
main conclusions are given in Section V.

2. PROBLEM FORMULATION

Consider a stable dynamical nonlinear closed-loop system:

ẋ= f(x, q, θ), (1)

y = h(x),

with continuously differentiable f : Rn × Rl × R → Rn
and h : Rn → R. Here x ∈ Rn denotes the closed-loop
state, y ∈ R the measurable performance function output,
q ∈ Rl the measurable state disturbance and θ ∈ R denotes
a scalar (optimizing) input to the closed loop system.

Let the following assumptions hold:

Assumption 1. The relative degree of (1) w.r.t. the output
y and the input θ is at least 1.

Assumption 2. There exists a smooth function s : R ×
Rl → Rn such that f(x, q, θ) = 0, if and only if x = s(θ, q).

Assumption 3. For each θ ∈ R and q ∈ Rl, the equilib-
rium of the system (1), given by x = s(θ, q), is locally
exponentially stable uniformly in θ and q.

Assumption 4. There exists a smooth function z : Rl → R
such that for each q ∈ Rl

∂h(s(θ, q))

∂θ
(θ∗, q) = 0, (2)

∂2h(s(θ, q))

∂θ2
(θ∗, q) =W (q) < 0, W (q) = W (q)T ,

if and only if θ∗ = z(q), see Fig. 1 for illustration. Without
loss of generality we thus assume that the extremum of h
(w.r.t. θ) is a maximum.

The first assumption removes the possibility of a direct
relation between the optimizing input and the performance
function output (feedthrough). If omitted, the existence of
such a relation would cause the related ESC to optimize
it instead of the equilibrium performance of the closed-
loop system, which is clearly undesirable. The second
relates the equilibria of the system to the input and the
disturbance while the third provides guarantees for their
stability. Finally, the last assumption requires that there
is an equilibrium where the performance function admits a
maximal (optimal) value for every value of the disturbance.
It also states that the corresponding optimizing input is
parameterized by the disturbance. Thus one can proceed
with construction of an extremum (optimum) seeking

algorithm, with a disturbance feedforward. Note that each
of the functions f, s, h and z may be unknown to the
designer.

Within this class of systems we treat a problem of finding
the input θ = θ∗ which optimizes the performance function
h(s(θ, q)) for each value of the measured disturbance q. In
particular, we are interested in the ESC-based solutions
yielding an approximation of the unknown mapping z(q).

θ

q

 

 

min

max

h(s(θ,q))

z(q)

Fig. 1. Illustrations of h(s(θ, q)) and z(q) functions

3. PROPOSED SCHEME

The proposed ESC scheme consists of a performance func-
tion feedback and a disturbance feedforward component,
see Fig. 2. The feedforward component implements an
approximation of the unknown static relation z(q). It com-
putes the feedforward input θff ∈ R as a function of the
disturbance q and the adaptive feedforward parameters
η ∈ Rr. Ideally, one would find the latter by minimizing
the norm of the difference between the optimal and the
feedforward input. However, as the optimal input θ∗ is
inherently unknown η is continuously updated using the
“best guess” instead, i.e., the (unperturbed) input θ̄ ≈ θ∗
to the closed-loop system:

θ̄ = θ̄fb + θff , (3)

where θ̄fb ∈ R represents the unperturbed feedback input
produced by the feedback component as a result of the
application of the classical gradient-based ESC algorithm
of Krstić and Wang [2000].

Performance
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θfb
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Fig. 2. Adaptive disturbance feedforward ESC

In other words, the feedforward parameters are found by
minimizing the square of the approximation error e ∈ R
given by:

e = θ̄ − θff = θ̄fb. (4)

The input θ is a sum of the (perturbed) feedback and the
feedforward input, θfb and θff :

θ = θfb + θff , (5)

where the feedback input is obtained by adding a sinu-
soidal perturbation signal δ = α sin(ωt) to θ̄fb:

θfb = θ̄fb + δ. (6)

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

384



Download English Version:

https://daneshyari.com/en/article/712182

Download Persian Version:

https://daneshyari.com/article/712182

Daneshyari.com

https://daneshyari.com/en/article/712182
https://daneshyari.com/article/712182
https://daneshyari.com

