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Abstract: An adaptive regulator is proposed for parameter dependent families of linear systems
subject to changes in the zero structure. Adaptation is required for the parameter dependent
family of plants but continuous adaptive regulation is limited by relative degree and right half
plane zeros. A form of adaptive regulation is presented that accommodates parameter induced
changes in the zero structure. The conditions for regulation divide the parameter space into
disjoint sets thereby defining subfamilies of plants. These plant subfamilies guide controller
design. Controller stability is guaranteed by Linear Matrix Inequalities (LMI) and a switch
logic based on Lyapunov functions.
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1. INTRODUCTION

A single controller may be inadequate for systems that ex-
perience change in their zero structure. Such systems may
be modeled by a structurally diverse family of plants. At
any given time the appropriate plant model is uncertain.
Multiple model adaptive techniques have been proposed to
accommodate such systems Anderson (2000); Angeli and
Mosca (2002); Boskovic (2008). Multiple model adaptation
selects a controller from a predefined set. In general, the
set of controllers is finite although the family of plants may
be continuous.

The importance of the open loop zero structure for closed
loop regulation has long been known, c.f. Kwakernaak
and Sivan (1991); Francis (1977); Kwatny et al. (1991).
For a parameter-dependent family of plants, points in
the parameter space that do not satisfy the open loop
existence conditions for regulator design are called singular
points. Singular points form codimension-1 submanifolds
that divide the parameter space into disjoint sets. These
disjoint sets of the parameter space form subfamilies of
plants that have the same zero-structure. A regulator
designed for one subfamily will generically fail to regulate
a plant in a different subfamily Berg and Kwatny (1994).
This bound on simultaneous regulation of subfamilies is
the basis for the novel multiple model adaptive control
design technique presented here.

The design of a finite set of controllers to guarantee
stability across the family of plants, called the covering
problem, is fundamental. Several authors have considered
covering from the perspective of controller robustness,
Anderson (2000); Boskovic (2008). These designs start
with a finite set of plant models and employ robustness
metrics to cover the family of plants. We propose a
covering method that starts with plant subfamilies and
obtains controllers for convex regions of the subfamily’s
parameter space.

The design of a switch logic to select a stabilizing controller
from the set of controllers is the second fundamental prob-
lem of multi-model adaptive control. The design method
proposed here unifies switch logic and control covering into
a single computation. Recall that a single algebraic Riccati
equation (ARE) obtains a quadratic Lyapunov function
matrix and linear quadratic regulator (LQR) gains. And
the quadratic ARE can be written as a convex linear
matrix inequality (LMI) to facilitate fast solution. A set
of algebraic Riccati inequalities for a convex region of the
subfamily’s parameter space may be solved for a common
LQR state feedback gain and a common quadratic Lya-
punov function (CQLF). By choosing Lyapunov function
based switch logic and LQR control gains, the multi-model
covering and switch logic design computations are unified
into a set of LMIs.

This paper is organized as follows. Section 2 defines the
specific problem considered herein. Section 3 summarizes
the regulation problem and details the relationship be-
tween zero dynamics and simultaneous regulation. Sec-
tion 4 presents our conception of multiple model adaptive
regulation (MMAR). Section 5, our main results, details
MMAR. Section 6 gives simulation results and Section 7
summarizes the main conclusions.

2. PROBLEM DEFINITION

Define a parameter dependent family of linear plants

ẋ=Aθx+Bθu (1)

e=Cθx

as P (θ) ∈ P where x ∈ Rn, u ∈ Rm, e ∈ Rp. The
parameter dependent matrices are Aθ = A (θ) , Bθ =
B (θ) , Cθ = C (θ) where θ ∈ Rk is a vector of unknown but
bounded constant parameters. The goal is to regulate the
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plant with respect to a set of exogenous signals generated
by the model

ϑ̇ = Zϑ (2)

where ϑ ∈ Rr. The set of exogenous signals considered in
this paper are step commands and constant disturbances
such that Z = 0r. The exogenous signals are assumed to
drive the plant (1) through matrices E and F ; accordingly

ẋ=Aθx+Bθu+ Eϑ

ϑ̇=Zϑ (3)

e=Cθx+ Fϑ

As is well known, such disturbance models can effectively
characterize command signals and disturbances. The prob-
lem of designing robust regulators for systems described
by (3) is well studied, e.g., Davison (1972); Francis (1977);
Kwatny and Kalnitsky (1978). In this work an adaptive
regulator is sought that associates an appropriate robust
regulator with the actual occurring member of the plant
family. The two central problems in doing this are:

• Covering Problem: Given a range of plant parameters
θ, design a set of controllers C such that each P (θ) ∈
P is stabilized by at least one Ci ∈ C.
• Switch Logic Design: Given a plant family P and a

finite control covering, design a switching logic that
guarantees convergence to a stabilizing regulator for
the actual occurring plant.

In subsequent sections, these issues will be addressed.

3. REGULATION

Before proceeding with adaptive regulation of the param-
eter dependent system defined in (3) it is necessary to
summarize some general results for the regulation of an
individual linear system.

3.1 The Linear Regulator Problem

Consider a parameter independent linear system with
disturbance state vector ϑ

ẋ=Ax+Bu+ Eϑ

ϑ̇=Zϑ (4)

e=Cx+ Fϑ

It will be assumed that B and C are of full rank.

Definition 1. Regulation requires both lim
t→∞

e (t) = 0 and

internal stability. Regulation in the presence of variation
in the plant matrices A,B,C is known as robust regulation
or structurally stable regulation.

Structurally stable regulation uses error feedback and
incorporates an internal model of the external signals to
be tracked and disturbances to be rejected.

Theorem 2. Francis (1977) Necessary and sufficient condi-
tions for structurally stable regulation are

(1) (A,B) stabilizable
(2) (C,A) detectable

(3) Rank

[
λi −A B
C 0

]
= n+ r for λi an eigenvalue of Z

The third condition requires the plant transmission zeros
to be different than the spectrum of Z. Furthermore, there
must be at least as many controls as there are outputs.
Since it is always possible to reduce the number of controls,
we will henceforth assume r = m, so the system is square.

3.2 Loss of Simultaneous Regulation

Theorem 2 specifies the open loop system {A,B,C} for
which robust regulation is possible. Now consider robust
regulation failure. The system matrix for {Aθ, Bθ, Cθ} is

Γθ (s) =

[
sI −Aθ Bθ
Cθ 0

]
Definition 3. The set of points in parameter space on
which regulation fails is the singular surface,{

θ ∈ Rk : det Γθ (0) = 0
}

The system matrix Γθ (s) can lose rank due to a zero at the
origin and also due to a defect in the input Bθ or output
Cθ matrices. The singular surface is dimension k − 1, or
codimension one in the parameter space. Since Γθ is either
a regular or singular pencil for fixed θ, the singular surface
partitions the parameter space into disjoint sets. Theorem
4 parallels Berg and Kwatny (1994).

Theorem 4. Consider a region of the parameter space bi-
sected by the singular surface. A robust regulator designed
for one half of the space will be unstable in the adjacent
half space for generic systems.

The singular surface divides the original family of plants
into sub-families. A robust regulator designed for (4) and
applied to (3) will fail to stabilize adjacent sub-families.

Proof: Loss of simultaneous regulation at a singular surface
is introduced in Kwatny et al. (1991) and proved in Berg
and Kwatny (1994). Loss of stability at a singular surface
for a state feedback regulator design is detailed in Section
5.1.

Traversing a singular surface is a sufficient but not a
necessary condition for loss of stability. Loss of stability is
certain at the singular surface. Loss of stability is possible
within an open region of the parameter space. In summary,
the singular surface partitions the parameter space. The
resulting disjoint regions are a starting point for multiple
model controller selection.

4. MULTIPLE MODEL ADAPTIVE REGULATION

4.1 Covering

Due to Theorem 4, a multiple model approach is employed
to regulate the family of plants P. A generic multiple
model control structure is illustrated in Figure 1. This
generic structure can support numerous control design
methods for Ci, even within the same set C.
Here each Ci regulates some region of P and each P (θ) ∈
P is regulated by at least one Ci ∈ C. Previous authors,
for example Anderson (2000); Boskovic (2008), design
controllers for a finite set of plant models and then employ
robustness metrics to ensure P is covered. In this paper,
controllers are designed for a finite set of convex polytopes
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