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Abstract: We present in this paper a preliminary result on extremum seeking (ES)-based
adaptive trajectory tracking control for nonlinear systems. We propose, for the class of nonlinear
systems with parametric uncertainties which can be rendered integral Input-to-State stable
(iISS) w.r.t. the parameter estimation errors input, that it is possible to merge together
the integral Input-to-State stabilizing feedback controller and a model-free extremum seeking
algorithm to realize a learning-based indirect adaptive controller. We show the efficiency of this

approach on a mechatronic example.

1. INTRODUCTION

Classical adaptive control deals with controlling partially
unknown process based on their uncertain model, i.e.,
controlling plants with parameters uncertainties. Classical
adaptive methods can be classified as ‘direct’, where the
controller is updated to adapt to the process, or ‘indirect’,
where the model is updated to better reflect the actual
process. Many adaptive methods have been proposed over
the years for linear and nonlinear systems, we could not
possibly cite here all the design and analysis results that
have been reported, instead we refer the reader to e.g.
Landau et al. [2011], Krstic et al. [1995] and the references
therein for more details. What we want to underline here is
that these results in ‘classical” adaptive control are mainly
based on the structure of the model of the system, e.g. lin-
ear vs. nonlinear, with linear uncertainties parametrization
vs. nonlinear parameterizations, etc.

On the other hand, Extremum secking (ES) is a well known
approach by which one can search for the extremum of a
cost function associated with a given process performance
(under some conditions) without the need for a detailed
model of the process, e.g. Ariyur and Krsti¢ [2003], Ariyur
and Krstic [2002], Nesic [2009]. Several ES algorithms with
their stability analysis have been proposed, e.g. Scheinker
2013], Krstic [2000], Ariyur and Krstic [2002], Tan et al.
2006], Nesic [2009], Tan et al. [2006], Ariyur and Krstié
2003], Rotea [2000], Guay et al. [2013], and many appli-
cations of ES algorithms have been reported, e.g Zhang
et al. [2003], Hudon et al. [2008], Zhang and Ordez [2012],
Benosman and Atinc [2013a,c].

Another worth mentioning paradigm is the one which
uses ‘learning schemes’ to estimate the uncertain part of
the process. Indeed, in this paradigm the learning-based
controller, based either on machine learning theory, neural
network, fuzzy systems, etc. is trying either to estimate the
parameters of an uncertain model, or the structure of a
deterministic or a stochastic function representing part or
totality of the model. Several results have been proposed
in this area as well, and we refer the reader to e.g. Wang
and Hill [2006] and the references therein for more details.
We want to concentrate in this paper on the use of ES
theory in the ‘learning-based’ adaptive control paradigm.
Indeed, several results were recently developed in this
direction, e.g. Haghi and Ariyur [2011], Ariyur et al. [2009],
Guay and Zhang [2003], Adetola and Guay [2007], Zhang
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et al. [2003], Hudon et al. [2008], Benosman and Atinc
[2013a,c]. For instance in Haghi and Ariyur [2011], Ariyur
et al. [2009] the authors used a model-free ES, i.e., only
based on a desired cost function, to estimate parameters
of a linear state feedback to compensate for unknown
parameters for linear systems. In Guay and Zhang [2003],
Adetola and Guay [2007] an extremum seeking-based con-
troller for nonlinear affine systems with linear param-
eters uncertainties was proposed. The controller drives
the states of the system to unknown optimal states that
optimize a desired objective function. The ES controller
is not model-free in the sense that it is based on the
known part of the model, i.e., it is designed based on
the objective function and the nonlinear model structure.
Similar approach is used in Zhang et al. [2003], Hudon
et al. [2008] when dealing with more specific examples.
In Benosman and Atinc [2013a], the authors used, for
the case of electromagnetic actuators, a model-free ES,
i.e., only based on the cost function without the use of
the system model, to learn the ‘best’ feedback gains of a
passive robust state feedback. Similarly, in Benosman and
Atinc [2013¢], a backstepping controller was merged with
a model-free ES to estimate the uncertain parameters of a
nonlinear model for electromagnetic actuators. Although,
no stability analysis was presented for the full controller
( i.e., backstepping plus ES estimator), very promising
numerical results where reported.

In this work we propose to generalize the idea of Benosman
and Atinc [2013c], for the class of nonlinear system with
parametric uncertainties which can be rendered iISS w.r.t.
the parameters estimation error. The idea is based on a
modular design, where we first design a feedback controller
which makes the closed-loop tracking error dynamic ilSS
w.r.t. the estimation errors and then complement this iISS-
controller with a mode-free ES algorithm that can mini-
mize a desired cost function, by tuning, i.e., estimating, the
unknown parameters of the model. The modular design
simplifies the analysis of the total controller, i.e., ilSS-
controller plus ES estimation algorithm. We first propose
this formulation in the general case of nonlinear systems
and then show a detailed case-study on a mechatronic
example.

This paper is organized as follows: Section II is used to
recall some notations and definitions. In Section III we
present the main result of this paper, namely, the ES-based
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learning adaptive controller. Section IV is dedicated to an
application example, and the paper ends with a Conclusion
in Section V.

2. PRELIMINARIES

Throughout the paper we will use ||.|| to denote the Eu-

clidean norm; i.e., for z € R™ we have ||z|| = VaTz. We
will use the notation |.| for the absolute value of a scalar
variable, and (.) for the short notation of time derivative.
We denote by C* functions that are k times differentiable.
A continuous function « : [0,a) — [0, 00) is said to belong
to class K if it is strictly increasing and «(0) = 0. A
continuous function S : [0,a) x [0,00) — [0,00) is said
to belong to class KL if, for each fixed s, the mapping
B(r, s) belongs to class I with respect to r and, for each
fixed r, the mapping 3(r, s) is decreasing with respect to
s and B(r,s) — 0 as s — oo.

Let us now introduce some useful definitions.

Definition. 1 [Local Integral Input-to-State Stability Ito
and Jiang [2009]]
Consider the system

&= f(t,z,u) (1)
where x € D C R” such that 0 € D, and f : [0,00) x
D x D, — R™ is piecewise continuous in ¢ and locally
Lipschitz in x and w, uniformly in ¢. The inputs are
assumed to be measurable and locally bounded functions
u: Rsg — D, € R™. Given any control u € D,, and any
& € Dy C D, there is a unique maximal solution of the
initial value problem & = f(¢, z,u), x(tp) = & Without
loss of generality, assume tg = 0. The unique solution is
defined on some maximal open interval, and it is denoted
by x(-,&,u). System (1) is locally integral input-to-state
stable (LiISS) if there exist functions «, v € K and § € KL
such that, for all £ € Dy and all u € D,, the solution
x(t, &, u) is defined for all ¢ > 0 and

O‘(Hx(tagru)”)Sﬂ(”ﬁ”aﬂ"’/() Y(lluls)Dds — (2)

for all ¢ > 0. Equivalently, system (1) is LiISS if and only
if there exist functions 8 € KL and 1, 72 € K such that

et & u)ll < BUENL ) +m </0 ’YQ(HU(S)”)dS) 3)

for all ¢ > 0, all £ € Dy and all ©v € D,. Note that if
system (1) is LiISS, then the O-input system is locally
uniformly asymptotically stable (0-LUAS), that is, the
unforced system
f(t,z,0) (4)
).

is LUAS (Sontag and Wang [1996]

Definition. 2 [e- Semi-global practical uniform ultimate
boundedness with ultimate bound ¢ ((e — J§)-SPUUB)
Scheinker [2013]]
Consider the system

&= f(t,x) (®)
with ¢°(¢,%0,20) being the solution of (5) starting from
the initial condition x(t9) = xg. Then, the origin of (5) is
said to be (€, §)-SPUUB if it satisfies the following three
conditions:
1-(¢, 6)- Uniform Stability: For every co €]9, 00|, there exists
c1 €]0,00[ and € €]0, 00| such that for all ¢y € R and for
all 2o € R™ with ||zo|| < ¢1 and for all € €]0, €],

||¢€(t7t0,1’0)|| < ¢, Vit € [t()7OO[
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2-(€,9)-Uniform ultimate boundedness: For every c¢; €
10, 0o[ there exists ¢ €], 00] and é €]0, oo[ such that for
all ]to E[ R and for all g € R™ with ||x¢|| < ¢1 and for all
€ €)0, €[,
||¢E(t,t0,$0)” < cg9, Vt e [tQ,OO[

3-(¢,0)-Global uniform attractivity: For all ¢, co € (9, 00)
there exists T' €]0, oo[ and € €]0, oo such that for all ¢y € R
and for all zg € R™ with ||zg[| < ¢1 and for all € €]0, €],

H(rbe(tv tOv :CO)” < ca, Vit € [tO —+ T, OO[
3. LEARNING-BASED ADAPTIVE CONTROLLER

Consider the system (1), with parametric uncertainties

A e RP
&= f(t,z,Au) (6)
We associate with (6), the output vector
y = h(z) (7)

where h: R" — R",
The control objective here is for y to asymptotically track
a desired smooth vector time-dependent trajectory yres :

[0,00) — R".
Let us now define the output tracking error vector as
ey(t) = y(t) = yres(t),

We then assume the following
Assumption 1. There exists a robust control feedback
wiss(t, 2, A) : RXR™ x R? — R™, with A(t) being the
dynamic estimate of the uncertain vector A, such that,
the closed-loop error dynamics

€y = f(t, €y, en) (8)

is iISS from the input vector ea = A — A(¢) to the state
vector e,,.

Remark 2. Assumption 1 might seem too general, how-
ever, several control approaches can be used to design
a controller u;ss rendering an uncertain system iISS, for
instance backstepping control approach has been shown
to achieve such a property for parametric strict-feedback
systems, e.g. Krstic et al. [1995]. This is a preliminary
report, and we do not pretend here to present a detailed
solution for all the cases. A more detailed study of how to
achieve Assumption 1 for specific classes of systems and
how to use it in the context of ES learning-based adaptive
control, will be presented in our future reports.

Let us define now the following cost function

QA1) = F(ey(A), 1) (9)
where F : RM x Rt — R*, F(0,t) =0, F(ey,t) > 0 for
ey 7 0. We need the following assumptions on ().
Assumption 3. The cost function @ has a local minimum
at A* = A.
Assumption 4. |%| < pg, Vt e RT, VA e R,
Remark 5. Assumption 3 simply means that we can con-

sider that @ has at least a local minimum at the true values
of the uncertain parameters.

We can now present the following Lemma.
Lemma 6. Consider the system (6), (7), with the cost
function (9), then under Assumptions 1, 3 and 4 , the

controller w;ss, where A is estimated with the multi-
parameter extremum seeking algorithm

A; = av/(wy)cos(wit) — ky/oisin(wit)Q(A), i € {1,...,p}

(10)
with a > 0, & > 0, w; # wj, 4,5,k € {1,...

,p}, and
w; > w*, Vi € {1,...,p}, with w* large enough, ensures
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