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Abstract: Block-oriented models are often used to model nonlinear systems. They consist
of linear dynamic (L) and nonlinear static (N) sub-blocks. This paper proposes a method to
generate initial values for a Wiener-Hammerstein model (LNL cascade). The method starts from
the best linear approximation (BLA) of the system, which provides an estimate of the product
of the transfer functions of the two linear dynamic sub-blocks. Next, the poles of the BLA are
assigned to both linear dynamic sub-blocks. The linear dynamics are then parameterized in
terms of rational orthonormal basis functions, while the nonlinear sub-block is parameterized
by a polynomial. This allows to reformulate the model to the cascade of a parallel Wiener (with
parallel LN structure) and a linear dynamic system, which is bilinear in its parameters. After
a bilinear optimization, the parallel Wiener part is projected to a single-branch Wiener model.
The approach is illustrated on a simulation example.
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1. INTRODUCTION

Although nonlinear distortions are often present, many
dynamical systems can be approximated by a linear model.
When the nonlinear distortion level is too high, a linear
approximation is insufficient, and a nonlinear model is
needed.

One possibility is to use block-oriented models [Billings
and Fakhouri, 1982, Giri and Bai, 2010], which are built
up by linear dynamic and nonlinear static (memory-
less) blocks. Due to this highly structured nature, block-
oriented models offer insight about the system to the user.
The simplest block-oriented models are the Wiener model
(linear dynamic block followed by a nonlinear static block),
and the Hammerstein model (linear dynamic block pre-
ceded by a nonlinear static block). They can be generalized
to a Wiener-Hammerstein model (nonlinear static block
sandwiched between two linear dynamic blocks, see Fig. 1).

Several identification methods have been proposed to iden-
tify single-branch Wiener-Hammerstein systems. Early
work can be found in Billings and Fakhouri [1982]
and Korenberg and Hunter [1986]. The maximum likeli-
hood estimate is formulated in Chen and Fassois [1992].
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The recursive identification of error-in-variables Wiener-
Hammerstein systems is considered in Mu and Chen
[2014]. Some other methods start from the best linear
approximation (BLA) [Pintelon and Schoukens, 2012] of
the Wiener-Hammerstein system [Sjöberg et al., 2012,
Westwick and Schoukens, 2012]. These methods will be
discussed in more detail in Section 3.

This paper presents a method to generate starting val-
ues for single-branch Wiener-Hammerstein systems. The
method starts from the BLA of the system. Next, the poles
of the BLA are used to construct generalized orthonormal
basis functions (GOBFs) [Heuberger et al., 2005] that pa-
rameterize both the front and the back dynamics. Using a
multivariate polynomial to describe the static nonlinearity,
the model is reformulated to the cascade of a parallel
Wiener and a linear dynamic system, which is bilinear in
its parameters. After a bilinear optimization, the parallel
Wiener part is projected to a single-branch Wiener model.
This results in the initial estimate of the single-branch
Wiener-Hammerstein system.

The rest of this paper is organized as follows. The basic
setup is described in Section 2. Section 3 gives a brief
overview of the BLA, and discusses three related identifi-
cation methods. Section 4 presents the proposed approach,
which is illustrated on a simulation example in Section 5.
Finally, the conclusions are drawn in Section 6.
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2. PROBLEM STATEMENT

2.1 Setup

Consider the Wiener-Hammerstein system in Fig. 1, given
by

x(t) = R(q)u(t)

w(t) = f(x(t))

y(t) = S(q)w(t) + v(t)

, (1)

where R(q) and S(q) are linear time-invariant (LTI)
discrete-time transfer functions in the backward shift op-
erator q−1 (q−1u(t) = u(t− 1)), i.e.

R(q) =
BR(q)

AR(q)
=

∑nR
l=0 bR,lq

−l∑mR
l=0 aR,lq

−l

S(q) =
BS(q)

AS(q)
=

∑nS
l=0 bS,lq

−l∑mS
l=0 aS,lq

−l

, (2)

where f(x) is a static nonlinear function, and where v(t)
is additive output noise.

2.2 Assumptions

It is assumed that

(1) both R(q) and S(q) are proper, i.e. nR ≤ mR, and
nS ≤ mS ,

(2) there are no pole-zero cancellations in the product
R(q)S(q),

(3) f(x) is non-even around the operating point,
(4) the input signal u(t) has a Gaussian amplitude dis-

tribution, and
(5) the output noise v(t) is a zero-mean filtered white

noise that is independent of the input signal u(t).

The reason for Assumption 4 is to obtain a good estimate
of the product of the underlying dynamics R(q) and S(q)
in (3). If Assumption 4 does not hold, a model error is
made in (3) that drops rapidly with the length of the
impulse response of R(q) [Wong et al., 2012, Tiels and
Schoukens, 2011].

2.3 Problem statement

The problem addressed in this paper is the following.
Given a data sequence {u(t), y(t)} for t = 0, . . . , N − 1,
find initial estimates R̂(q), f̂(x), Ŝ(q) such that the sim-
ulated output ŷ(t) = Ŝ(q)f̂

(
R̂(q)u(t)

)
is close to y(t) in

mean-square sense.
Remark 1. From only input/output data, the linear dy-
namics and the static nonlinearity can only be estimated
up to arbitrary non-zero scaling factors that can be ex-
changed between the linear dynamics and the static non-
linearity without affecting the input/output behavior, i.e.
Ŝ(q)f̂

(
R̂(q)u(t)

)
=
[
ηŜ(q)

]
1
η f̂
(

1
ζ

[
ζR̂(q)

]
u(t)

)
.

3. THE BEST LINEAR APPROXIMATION OF A
WIENER-HAMMERSTEIN SYSTEM

3.1 The best linear approximation

The BLA of a system is defined as the linear system whose
output approximates the system’s output best in mean-

R(q) f(x) S(q) +
u(t) x(t) w(t) y0(t)

v(t)

y(t)

Fig. 1. A Wiener-Hammerstein system (R and S are linear
dynamic systems and f is a nonlinear static system).

square sense [Pintelon and Schoukens, 2012]. Due to Buss-
gang’s theorem [Bussgang, 1952], for a Gaussian excitation
u(t), the BLA of the considered Wiener-Hammerstein sys-
tem is equal to

GBLA(k) = cR(k)S(k) , (3)
with c a constant depending on the static nonlinear func-
tion f(x) and the power spectrum of the Gaussian excita-
tion u(t). This constant is non-zero under Assumption 3.

Under Assumption 2, it follows from (3) that the poles
(zeros) of the BLA are equal to the poles (zeros) of both
R and S. To obtain initial estimates for R and S, the poles
and zeros of the BLA should be split over the individual
transfer functions R and S.

3.2 Related initialization methods for Wiener-Hammerstein
systems

Several methods have been proposed to make this split.
Here we briefly discuss three of them, namely the brute-
force and the advanced method in Sjöberg et al. [2012], and
the QBLA method in Westwick and Schoukens [2012].

The brute-force method in Sjöberg et al. [2012] scans all
possible splits. For each of these splits, the static nonlin-
earity is estimated via a linear least-squares regression.
The obtained initial models are then tested on the data,
and the best performing model is retained for further
optimization. The drawback of this method is that the
number of possible splits grows exponentially in the model
order. This method can thus require a large computation
time.

The advanced method in Sjöberg et al. [2012] uses a basis
function expansion for R, based on the poles of the BLA,
and a basis function expansion for the inverse of S, based
on the zeros of the BLA. Like this, the poles of R̂ and the
zeros of Ŝ are fixed to those of the BLA. Hence, the model
order of R̂ and Ŝ is too large. By expressing the static
nonlinearity in terms of two multivariate polynomials, the
estimation of the remaining model parameters (the polyno-
mial coefficients) is formulated linearly-in-the-parameters.
Next, the model orders of R̂ and Ŝ are reduced by perform-
ing several scans. In each scan, the effect of removing one
basis function is verified, and the best performing model
in terms of rms error is retained as an initial model. After
each scan, one basis function is permanently removed.The
initial models are then ranked with respect to their rms
error. Typically, the rms error makes a strong jump when
a necessary basis function was removed.

The method described in Westwick and Schoukens [2012]
not only uses the BLA from the input u(t) to the output
y(t), but also the so-called quadratic BLA (QBLA), which
is a higher order BLA from the squared input u2(t) to the
output residual ys(t) = y(t)−GBLA(q)u(t). It is shown
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