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Abstract: Block oriented nonlinear models capture the dynamics of a nonlinear system with
linear dynamic sub-systems (L), the nonlinear behavior is modelled using static nonlinear sub-
blocks (N). In this paper we study the generation of initial estimates for the linear dynamic
blocks of a Wiener-Hammerstein system that has a cascaded LNL structure. While it is
very easy to identify the product of the transfer functions of the first and last dynamic block
using linear system identification methods, it turns out to be very difficult to split the global
dynamics over these individual blocks. In this paper a method is proposed that allows the
poles of the best linear approximation to be assigned to the first or second linear block. Once
this split is made, it is shown in the literature that the remaining initialization problem can
be solved much easier than the original one. The first step of the method is the design of
a special random phase multisine excitation, using pair-wise coupled random phases. Next,
a modfied best linear approximation will be estimated on a shifted frequency grid. It will
be shown that this procedure shifts the poles and zeros of the first linear sub-block with a
known frequency offset, while those of the second sub-block are not changed. The shifted poles
and zeros result in a transfer function with complex coefficients that can be identified using a
modified frequency domain estimation method. This results in a simple initialization method,
based on a linear system identification step.
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1. INTRODUCTION

Nonlinear system identification is much more involved
than linear system identification. One of the major issues
is the selection of a good model structure. Typical exam-
ples are nonlinear state space models or nonlinear ARX
(NARX) and ARMAX (NARMAX) models that are well
suited to capture the behavior of a dynamic nonlinear sys-
tems (Billings, 2013). Many successful applications are
described. However, none of the above mentioned meth-
ods do perfectly match the needs of the design- and con-
trol engineers: typically a (very) large number of model
parameters is used, and the models provide very little
structural insight into the system behavior, all delayed
inputs and outputs are nonlinearly combined. Moreover,
the number of possible combinations of parameters grows
very fast with the degree of the nonlinearity and the num-
ber of taps in the filters. Alternatively, block oriented
nonlinear models like those shown in Figure 1 can be
used (see also Billings and Fakhouri, 1982). These cap-
ture the dynamics of the system using linear dynamic
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sub-systems (L), while the nonlinear behavior is modelled
using static nonlinear sub-blocks (N). This idea matches
also with the observation that in many systems, the non-
linearity is localised at a few places in the system, em-
bedded in the remaining linear dynamics. Although the
identification of block oriented model structures is a hot
topic, the actual state of the art is still struggling with
very simple structures: most (> 90%) of the recent pub-
lications on block oriented systems still deal with sin-
gle branch structures consisting of sandwich systems like
Wiener (LN), Hammerstein (NL), Wiener-Hammerstein
(LNL), and Hammerstein-Wiener (NLN) as shown in Fig-
ure 1: a,b,e,f. In the recent edited book of Giri and
Bai (2010), none of the 24 contributions was consider-
ing more complex systems, while it is known for a long
time that structures with parallel branches of LNL sys-
tems (see for example Figure 1 h) are strongly needed
to approximate a wide class of real-life nonlinear systems
with a small(er) number of branches [Pal1979]. Some
early attempts to identify parallel structures are reported
in Billings and Fakhouri (1982), Hunter and Korenberg
(1986), Korenberg (1991). Recently, the effort to iden-
tify parallel Hammerstein or Wiener systems (Figure 1 c)
is strongly increased because these model structures are
nowadays popular in the telecommunication field to lin-
earise power amplifiers. Little or no information is avail-
able to identify parallel Hammerstein-Wiener or parallel
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Wiener-Hammerstein, and nonlinear feedback structures
as shown in Figure 1 g, h, i) (Schoukens and Rolain, 2012)
are hardly discussed in the literature.

The major difficulty in block-oriented identification is
the generation of good starting values for the dynam-
ics of the linear blocks, even for the single branch WH-
model. Early attemps were published by (Vandersteen
and Schoukens, 1999) using a series of very specific ex-
periments. Also in (Haber and Keviczky, 1999), a num-
ber of methods is presented to separate the dynamics of
the linear blocks, but in each of these methods, a set of
nonlinear equations need to be solved. This raises again
the problem of finding good initial values to start a nu-
merical search procedure. Recently, it was shown that
WH-systems could be modelled as a cascade of well se-
lected Hammerstein-Wiener systems (Wills and Ninness,
2012). Other attempts started from the best linear ap-
proximation (BLA) of the nonlinear system, and next the
poles and zeros are assigned to the first or second dynamic
block of the system using, for example, a brute force scan-
ning method by trying all possible combinations (Sjöberg
and Schoukens, 2012).

An attempt to split the poles, using a more systematic
procedure is given by Westwick and Schoukens (2012),
using a higher order BLA based on the squared or cubed
input. It is shown that the poles pi of the first linear
system will shift in this step to 2pi or 3pi, while those of
the second system remain invariant. This provides a tool
to separate both sets. However, due to the higher order
nature of the BLA, very long measurements are needed
in order to get a sufficient precision. In this paper we
will develop a similar approach, but using again the first
order BLA in stead of the higher order BLA. Using a well
designed excitation signal, we create again a shift of the
sytem poles. Because we make no use of higher order
BLA’s, we can avoid the use of extremely long experi-
ments.

We first will give a formal setup of the problem, fol-
lowed by an analysis of the best linear approximation for
a WH-system using a newly proposed class of excitation
signals: the phase coupled multisines. Eventually, some
simulation results are shown, followed by experimental
results.

2. THE BLA OF A WH-SYSTEM USING RANDOM
PHASE MULTISINES

In this section we give a brief introduction to the the-
ory of the best linear approximation of a nonlinear sys-
tem. We first define the class of systems, the class of
excitation signals, and introduce formally the concept of
the best linear approximation. Next we deliver explicit
expressions for GBLA for a WH-system.

2.1. System
In this paper we focus on a Wiener-Hammerstein single

branch block-oriented system as given in Figure 2. It
consists of a static nonlinear function f , that is acting
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Figure 1: Examples of block-oriented nonlinear model structures.
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Figure 2: Wiener-Hammerstein system.

on the output of the linear dynamic system R. Its output
is passed through the second linear dynamic system S.

In this paper, we consider, without loss of generality,
discrete time systems. All results are also valid for con-
tinuous time systems. Starting from the measured input
and output signal u(t), y(t), with t = 0, 1, · · · , N − 1, we
need to identify the linear dynamics R,S and the static
nonlinearity f . The paper is completely focused on the
generation of good initial estimates for R,S. For the mo-
ment we assume that there is no disturbing noise, all sig-
nals are exactly known. Adding disturbing noise to the
output, that is independent of the input, will not change
the conclusions of this paper since it is known that the
classical least squares framework results in consistent es-
timates of the BLA under these conditions (Pintelon and
Schoukens, 2012).

Define Y (k), U(k) as the discrete Fourier transforms of
u(t), y(t), evaluated at the frequencies k 2π

N . The analytic
relation between Y,U for a Wiener-Hammerstein system
is exactly known for polynomial nonlinearities, for exam-
ple for a cubic system (f(p) = p3), we have that (Pintelon
and Schoukens, 2012):

Y (k) =
∑N/2−1
l1=−N/2

∑N/2−1
l2=−N/2 · · ·

S(k)R(k − l1 − l2)R(l1)R(l2)U(k − l1 − l2)U(l1)U(l2)
(1)

In this expression we neglected the finite length effects
(initial transient in the time domain, leakage in the fre-
quency domain) without loss of generality. This will be
done so in the rest of this paper. An alternative expres-
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