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A B S T R A C T

This paper proposes a new approach to diagnose broken rotor bar failure in a line start-permanent magnet
synchronous motor (LS-PMSM) using random forests. The transient current signal during the motor startup was
acquired from a healthy motor and a faulty motor with a broken rotor bar fault. We extracted 13 statistical time
domain features from the startup transient current signal, and used these features to train and test a random
forest to determine whether the motor was operating under normal or faulty conditions. For feature selection, we
used the feature importances from the random forest to reduce the number of features to two features. The
results showed that the random forest classifies the motor condition as healthy or faulty with an accuracy of
98.8% using all features and with an accuracy of 98.4% by using only the mean-index and impulsion features.
The performance of the random forest was compared with a decision tree, Naïve Bayes classifier, logistic re-
gression, linear ridge, and a support vector machine, with the random forest consistently having a higher ac-
curacy than the other algorithms. The proposed approach can be used in industry for online monitoring and fault
diagnostic of LS-PMSM motors and the results can be helpful for the establishment of preventive maintenance
plans in factories.

1. Introduction

Electrical motors convert electricity to mechanical energy. They
account for two thirds of the total electricity use in industrial sites [1].
As a consequence, electrical machine manufacturers continuously strive
to reduce the amount of energy used by motors. The standard IEC/EN
60034-30:2008 proposes IE4 as the highest efficiency for motors [2]. A
LS-PMSM consists of a stator and a hybrid rotor. The rotor is comprised
of an electricity conducting squirrel-cage and pairs of permanent
magnet poles. The efficiency of LS-PMSMs stems from the combination
of elements from permanent magnet synchronous motors and induction
motors. The LS-PMSM provides (1) high efficiency, similar to perma-
nent magnet synchronous motors, and (2) high starting torque, similar
to induction motors [3].

Failures in electrical motors are common and difficult to prevent
because motors are generally operated in industrial sites with different
types of stress causing failures in various motor parts [4]. This has led
to research on methods for early detection of failure in motors, to
prevent motor inefficiencies and motor shutdown. In particular, rotor

faults are significant because they exacerbate failures in other parts of
the motor [5]. Various sensing techniques have been developed for
broken rotor bar detection in electrical motors [5]. For instance, motor
current signature analysis (MCSA) is a widely used technique due to its
low cost and non-invasive nature [6]. In MCSA, the steady state current
of a running motor is collected and recorded. From the recorded signal,
features are extracted from the time domain, frequency domain, or
time-frequency domain. These features are then used to make a diag-
nosis of the motor.

Fault analysis in induction motors has been widely applied. MCSA
has been used to analyze faults in induction motors, such as rotor faults,
bearing faults, eccentricity, misalignment, and stator faults [7–11]. Si-
milar techniques have also been used to analyze vibration [12–16] and
acoustic [17] signals of induction motors. The limitation of prior work
is that most fault analysis has been applied to induction motors, elec-
trical motors, fans, and gear boxes [7–17]. Yet, fault analysis in LS-
PMSMs has been limited to a smaller set of faults, such as rotor faults,
static eccentricity faults, and demagnetization [18–21]. Fault analysis
in LS-PMSMs also suffers from a number of shortcomings: (1) the use of
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mathematical and simulated models to analyze faults, as opposed to
using an LS-PMSM machine to collect data for fault detection; (2) the
use of steady-state current for fault analysis; and (3) lack of machine
learning algorithms for fault detection.

This paper makes three contributions. First, we used an LS-PMSM
machine to collect current data while subjecting the motor to different
loads. The rotor faults in our LS-PMSM machine were created by phy-
sically damaging the rotors of the LS-PMSM. We also analyzed the LS-
PMSM starting with an initial load, as opposed to introducing a load
after the motor had reached steady state, which is the common practice
in prior work [7–11].

Second, we analyzed the transient current from when the motor is
started. That is, we started the motor from standstill and waited for the
motor to reach steady state, with the current from this transient period
used for our analysis. Prior research uses the current from the steady
state for fault analysis [7–11]. Finally, our third contribution is that our
work is the first to apply machine learning for rotor fault detection in
LS-PMSMs. We used random forests for the detection of rotor faults, and
assessed the effectiveness of random forests by comparing with a de-
cision tree, a Naïve Bayes classifier, logistic regression, linear ridge, and
a support vector machine. To train these machine learning algorithms,
we extracted thirteen time domain features from the transient current
signal of the LS-PMSM, with the selection of the features based on prior
work [22,23]. While machine learning methods have been used for
fault detection in induction motors [7–11], to the best of our knowledge
this is the first work to present fault analysis in LS-PMSMs by comparing
various machine learning algorithms and using features extracted from
the transient current signal to train and test these algorithms.

2. Fault detection with machine learning

A random forest is a machine learning algorithm consisting of a
number of independent decision trees [24]. A decision tree classifies an
instance by testing attributes of the instance at each node of the tree
[25]. Each node tests a particular attribute, with the leaves of the tree
representing the output labels. Moving down a particular branch of a
tree tests particular attributes at each node in order to arrive to an
output label. A decision tree is typically built following a greedy ap-
proach, with the attribute/feature that results in the best split of the
training data being used for the root node, and subsequently the attri-
butes/features that result in the next best splits being used in the
children nodes.

In contrast to a decision tree, a random forest uses bagging to build
the decision trees in the forest [24]. In bagging, T bootstrap sets are
made by sampling with replacement N training examples from the
training set, with T indicating the number of trees in the forest. Only 2/
3 of each bootstrap set are used to build each tree, with the remaining
1/3, referred to as the out-of-bag data, used to get an estimate of the
classification error of each tree. Fig. 1 illustrates the process of building
a random forest with T trees.

In a typical decision tree, the greedy approach to building the tree
can result in cases where the weaker features are not used at all. A
random forest addresses this by choosing the best split in each node
from a random subset of all the available features [24]. The random
feature subset used for determining best node splits allows the weaker
features to be represented in the random forest. Trees are grown to
maximum length and without pruning to get low bias. Low correlation
between the trees in the random forest is achieved by randomization as
a result of the bootstrap samples and the random selection of features at
each split [26]. Random forests have performed well in applications of
fault diagnosis in rotating machinery [10,24].

Once the random forest has been built, an instance (x) is classified
by passing the instance to each decision tree in the random forest
(Fig. 2). Each decision tree classifies the instance by following a par-
ticular branch of the tree depending on the outcome from each node.
The output of the random forest is then decided by taking the majority

of the outputs from each tree. That is, the output of each tree is con-
sidered a vote, with the majority vote determining the output of the
random forest.

Random forests provide a way to perform feature selection by using

Fig. 1. Building a random forest with bagging.

Fig. 2. Classifying an instance from the test set by passing the instance to each tree in the
forest, and combining the outputs from all the trees using majority vote.
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