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A B S T R A C T

For secure and reliable operation of lithium-ion batteries in electric vehicles, diagnosis of the battery de-
gradation is essential. This can be achieved by monitoring the increase of the internal resistance of the battery
cells over the whole lifetime of the battery. In this paper, a method to estimate state of health (SoH) is presented
through the established linear relationship between ohmic internal resistance and capacity fade. Firstly, the
Thevenin model and the recursive least squares (RLS) algorithm are applied to simulate battery dynamic
characteristics and identify model parameters, respectively. Secondly, based on the established linear re-
lationship between ohmic internal resistance and capacity fade, both ohmic internal resistances at the start and
the end of the battery’s lifetime are estimated by only two random discharge cycles at different aging stages.
Finally, an online SoH estimator is formulated and applied to estimate the SoH of a battery’s remaining cycles. In
addition, a series of experiments were carried out based on dynamic loading to verify the proposed method. The
SoH estimates indicate that the evaluated maximum SoH errors are within±4%. The proposed SoH estimation
method is consistent with the measurement data of the battery and shows good results with very low compu-
tational effort.

1. Introduction

To address the challenges associated with increasing world energy
consumption and climate change, electric vehicles (EVs) can play a key
role. The development of suitable power batteries in EVs is essential,
and focuses on the lithium-ion battery due to its excellent power
characteristics [1]. Being the main power source of EVs, it is important
to manage the battery to extend its lifespan, improve its reliability, and
lower its cost. In order to guarantee the realization of these functions, a
battery management system (BMS) is necessary [2]. As the main part of
the energy system, the BMS plays a crucial role for states estimation,
battery monitoring, cell balancing, thermal management, and others
[1,3,4]. One of the core functions of state estimation is real-time SoH
estimation [3]. SoH estimation is very important for guaranteeing the
system’s performance and reliable operation, and it significantly affects
the overall vehicle performance and life cycle [5].

Conventionally, SoH is a parameter, which indirectly represents the
age condition of the battery cell and the remaining lifespan [6–8]. It
mainly reflects in two aspects: capacity fade and power fade [6,9,10].
Hence, the SoH can be estimated using the capacity or the impedance of
the battery.

A wide variety of SoH estimation methods [9,11] have previously
been summarized, each one has its own advantages and disadvantages.
The SoH estimations mainly include three categories [8]: (1) direct
measurement method; (2) model-based method; (3) data-driven
method.

(1) Direct measurement method: From the perspective of capacity, the
present maximum available capacity can be obtained using the
open-circuit voltage (OCV) method and the Coulomb-counting
method. From the perspective of impedance, the impedance of the
battery can also be measured with specialized equipment [12,13].
The OCV method can determine the battery capacity using the re-
lationship between OCV and state of charge (SoC). And the varia-
tion of OCV model is small over the battery lifetime. Thus, the ac-
curacy of the method for aged batteries is almost as high as those
new battery [1]. However, the method requires a long rest-time to
measure OCV accurately until the battery reaches a steady state
[14]. The Coulomb-counting method can determine battery capa-
city by integrating the battery discharge current, but this is time
consuming [8] and an accumulated error and sensor noise represent
significant problems. Electrochemical impedance spectroscopy
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(EIS) can determine the impedance using impedance spectroscopy
analysis [9]. Resistance test equipment and the Joule effect can also
determine the internal resistance [9]. In summary, a direct mea-
surement method usually has less computational complexity and is
possible to implement in a BMS. The drawbacks are that it has a low
accuracy, and usually requires special equipment and is not suited
for situ estimation [1,9].

(2) Model-based method: The main idea of the model-based SoH esti-
mation is to connect the measured battery signals (voltage, current,
and temperature) with the battery SoH employing a battery model
[1]. Adaptive models are developed to describe the dynamic char-
acteristics of the lithium-ion battery, including electrical and elec-
trochemical models. Adaptive techniques known from control
theory are employed with these adaptive models. For instance, in
Ref. [6], the SoH and SoC are estimated by the Extended Kalman
filter (EKF), but the SoH is updated offline and the time scale of the
SoH is based on model accuracy. In Ref. [15], the least squares
technique is used to estimate SoH. However, the present metho-
dology should be validated at different C-rates and temperatures for
a more realistic performance. In Ref. [16], the particle filter (PF) is
employed to estimate both the capacity and SoC, but the accuracy is
limited because of the simplified battery model. These methods are
online and closed-loop [8], and their performance has been vali-
dated with different experiments. However, the accuracy and ro-
bustness of the model decides the accuracy of the method.

(3) Data-driven method: The battery is considered a “black box” to es-
timate battery SoH without battery model in these methods. For
instance, in Refs. [17,18], artificial neural network (ANN) is applied
to estimate SoH. The support vector machine (SVM) is used for SoH
estimation in Refs. [19,20]. Besides, DVA (Differential Voltage
Analysis) [21] and ICA (Incremental Capacity Analysis) [2] are also
developed to estimate SoH. The framework of such methods con-
sists of off-line training and online SoH estimation [18]. In this
process, the feature extraction of battery degradation is also ne-
cessary. What’s more, a precise battery model is not necessary for
these data-driven methods, but these methods require a large da-
tabase for different working conditions during the lifetime. And the
DVA and ICA method require a constant and low current to dis-
charge the battery in order to acquire the accurate DV curves or IC
curves. In addition, these methods often require high computing
power and they may not be suitable for BMS, which only contains
some microcontrollers or low-cost systems [22]. Furthermore, the
battery parameters may change with the aging process in practical
applications.

The values of battery capacity usually are nonlinear, time varying,
and uncertain. Thus, it is still difficult to estimate the capacity of a
battery precisely. Lithium-ion battery degradation occurs mainly be-
cause the active substances, lithium ions and electrolyte, solidify gra-
dually in the SEI. As a result, they cannot continue to participate in the
battery electrode reaction. While the concentration of lithium ions is
closely linked to the capacity and the conductive properties of the
battery, a loss of lithium ions will lead to the decline in capacity and the
rise in impedance [23]. In addition, stressing the lithium-ion battery by
overcharging, exposure to extreme temperatures, or aging changes also
the carbon-based anodes irreversibly. The aging effect of the anodes
may be mostly attributed to changes at the SEI [9]. This electrochemical
mechanism increases the impedance and reduces the capacity at the
same time, and they follow approximately the same trend together
[10].

As previously shown, SoH estimation should be made by both: ca-
pacity and resistance estimation. However, the resistance is relatively
simple and fast to determine. The current algorithms to identify the
resistance are precise enough when they use the equivalent circuit
model. And Haifeng et al. [24] proposed a new definition of SoH based
on ohmic internal resistance. Hence, it is a good choice to estimate SoH

via ohmic internal resistance.
In order to estimate the SoH based on the intrinsic relationship

between ohmic internal resistance and capacity [25], the ohmic in-
ternal resistance of both a new battery (Rnew) and end-of-life battery
(Reol) are important [1,24]. However, due to the irreversible aging
process, it is difficult to acquire Rnew when the battery has been used for
some time. Also Reol cannot be measured easily either until the battery
is at the end of lifetime.

To solve this problem, a new method is proposed to estimate SoH by
using the correlation between ohmic internal resistance and capacity.
Thevenin model is suitable for modeling the relaxation effect and the
dynamic behavior of lithium-ion batteries. A recursive least squares
algorithm with a forgetting factor is used to realize accurate identifi-
cation of the model parameters [1,6,9]. Based on the correlation be-
tween the ohmic internal resistance and capacity, a linking equation to
calculate the Rnew and Reol can be built. Finally, the values for Rnew and
Reol can be estimated via two discharge tests, and the SoH estimation
method is developed. Different from other SoH estimation methods
based on internal resistance, the linear relationship between the battery
impedance increase and the battery capacity loss is built and applied
through only two online resistance tests and off-line capacity tests. This
method does not require complex matrix operations, special battery
tests, and too much previous knowledge of the operation performance
of the battery. In addition, a series of battery aging experiments at
different temperatures are carried out to demonstrate the validity and
precision of the proposed online estimation method.

The remainder of this paper is organized as follows: Section 2 re-
ports our experimental settings and aging experiments of batteries.
Section 3 develops the framework of our estimation method, and Sec-
tion 4 elaborates and discuss the results of the propose method. Section
5 concludes the paper.

2. Experimental

The proposed method is designed for online SoH estimation.
Therefore, recorded data of the dynamic load of electric vehicles are
required through the whole lifecycle.

2.1. Test bench

The battery test bench is shown in Fig. 1. It consists of an ITECH
electronic load IT8511+, an ITECH IT6523D as a charger, a set of
batteries (which may reside either inside or outside an environmental
chamber), a suite of sensors (voltage, current, and temperature), some
custom switching circuitry, a data acquisition system (DAQ) and a
computer for control and analysis. In addition, a battery monitoring
software PV8500 is used to control the IT8511+ load.

The IT8511+ can discharge a battery/battery pack according to the
program with a maximum discharge current of 30 A and the maximum

Fig. 1. The architecture of battery test bench.
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