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A B S T R A C T

It is proposed in the paper the interval data fusion procedure intended for determination of an interval to be
consistent with maximal number of given initial intervals (not necessary consistent among each other) and to be
with maximal likelihood including a value x∗ that can serve as representative of all the given intervals. An
algorithm of the interval fusion with preference aggregation (IF & PA) is proposed and discussed that can be
carried out with help of representation of intervals on the real line by weak order relations (or rankings) over a
set of discrete values belonging to these intervals. It is possible to determine a consensus ranking for collection of
discrete values rankings, corresponding to initial intervals. The highest ranked value, accepted as a result of the
fusion, guarantees improved accuracy and robustness of the interval data fusion procedure outputs. It is con-
sidered a space of weak orders induced by the intervals, its properties and dimension. A reasonable number
choice problem of discrete values, representing the interval data, is investigated. Related to the problem,
computing experiment results and recommendations are given. The interval data fusion procedures can be
widely applied in interlaboratory comparisons, prediction of fundamental constant values on the base of dif-
ferent measured values, conformity testing, enhancement of multisensor readings accuracy in sensor networks,
etc.

1. Introduction

Let x be a measurand, xi be a result of i-th measurement, εi be a
uncertainty of i-th measurement, and m be a number of measurements.
Description of the measurement results in form of intervals

= ± = + = …x x x i mε |ε |, 1, , ,i i i (1)

(the simplified form xi = x + εi is often used) whose bounds defined by
experimentally obtained or given beforehand uncertainty values is ra-
ther common both in theory and practice of measurement [1–3].
Usually, sets of such data are input of measurement results processing
procedure, aim of which, as a rule, is determination of a unique sum-
marized value x , by some justified way representing the input intervals.

Notice, carrying out of multiplemeasurements instead of a single one
provides an opportunity to avoid blunders and enhance reliability of the
determination of x .

The classic procedure of direct repeated measurements processing
described in many textbooks and guides in the field of metrology [4–7]
allows to find the summarized value x as the arithmetic mean and its
expanded uncertainty on the base of data of the same sample belonging
to the same population where observations xi were obtained by the
same observer by means of the same methods and instruments under
the same ambient conditions. Additionally, the biases are supposed to

be absent in the measurement results, i.e. expectation E(εi) = 0; values
εi are assumed to be independent and to have the same variances, i.e. D
(εi) = σ2 for all i. Such the observations sometimes are deemed to be
equidispersed, that is equally distributed random variables [5,8].

Legitimacy of the arithmetic mean use can be easily justified if, first
of all, to suggest that the intervals are equal to zero, i.e. εi = 0, and to
try to find x from the m equations

= = …x x i m, 1, , .i (2)

For each separate equation, x is uniquely defined, however, these so-
lutions are inconsistent among each other, and the whole system (2) is
inconsistent. As the system solution, one can use an approximate value
(estimate)

= …x f x x x( , , , )m1 2 (3)

that satisfies all m Eq. (2) with minimal error = ∑ −=φ x x( )i
m

i1
2. The

function φ has a minimum in a point where its derivative equals to 0,
i.e. = ∑ − == x x2 ( ) 0dφ

dx i
m

i1 , whence it appears the estimate x :

∑=
=

x
m
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i

m

i
1 (4)

One can see from Eq. (4) that x is the arithmetic mean of measurement
results xi.
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In order to check how the existence of uncertainty intervals affects
the estimate (4) let us cancel the above supposition εi = 0 and sub-
stitute Eq. (1) for xi into Eq. (4); we obtain = ∑ +=x x( ε )m i

m
i

1
1 . Ac-

counting that E(εi) = 0, we have the expectation of estimate (4)
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It follows from Eq. (5) that the estimate (4) coincides with the mea-
surand x, i.e. it is unbiased. Taking into account D(ε) = E[ε − E(ε)]2

and D(aε) = a2D(ε), if a= const, we obtain the variance of estimate (4)
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whence it follows that the standard deviation of mean (4) is m times
less than the sample standard deviation σ, that is, the estimate (4) is
consistent. It is well known that the properties of unbiasedness, con-
sistency, and also efficiency [1] of the estimate (4) are valid under
normal distribution N(μ, σ2) of measurement results.

There are many situations where it is necessary to find a most
trustworthy quantity value and its uncertainty on the base of mea-
surements carried out by different observers by means of various
methods and instruments in different laboratories and/or ambient
conditions. Series of obtained in this way observations are considered to
be not equidispersed, if estimates of their variances are considerably
differ from each other, i.e. = ≠ =+ +D D(ε ) σ (ε ) σi i i i

2
1 1

2 , i = 1, …,
m − 1, and arithmetic means are estimates of the same value μ [4,5,8].

For example, it may be required to process the non-equidispersed
measurement data in the following situations:

• evaluation of key comparison data provided by national metrology
institutes (NMIs) for a single stable travelling standard [9,10];

• estimation of uncertainty of a fundamental physical constant that
can be merely carried out by means of several principally different
and independent methods [11];

• revealing uncorrected systematic measurement errors, which re-
quires use of multiple investigators to measure a quantity in ques-
tion [4,12];

• interlaboratory comparisons (ILC) to verify the technical compe-
tence of calibration or measurement laboratories where similar
measurements are fulfilled by different laboratories by distinct
means, and outcomes are compatible or not [13–15]; and

• analysis of some measuring instrument regular calibrations data
accumulated for a long-term period where accuracy of observation
series is different due to change of instrument's metrological per-
formance in the course of time [16,17].

The list of the cases can be continued.
For produced in some of similar situations set of input intervals, the

summarized value is defined as the weighted arithmetic mean [4,18]
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whose uncertainty is
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where the weight of the measurement result xi is typically the reciprocal
square of the corresponding standard uncertainty =1/ε 1/σi i

2 2 [4]. It is
well known that the weighted mean is the maximum likelihood esti-
mate of the mean of independent normal distributions N(μ, σi

2) with the
same mean μ [18].

Consider, for example, how the weighted mean (7) is employed in

the popular Procedure A [19] used for processing ICL data where the
main task is to establish a reference value xref that characterizes a lar-
gest consistent subset (LCS) of (reliable) measurement results provided
by participating laboratories. When estimating the reference value xref
the Procedure A uses a weighted mean value y and corresponding un-
certainty εy calculated by Eqs. (7) and (8) where m is the number of
participating laboratories; xi is the nominal value estimate provided by
i-th laboratory; and εi is corresponding standard uncertainty. The cal-
culated weighted average value y is accepted as the reference value xref
if it is consistent with the data provided by the participating labora-
tories in accordance with the criterion χ2. If the consistency test is not
passed, it is proposed in [19] to use a scheme of successive exclusion of
outliers, i.e. measurement results which are not consistent with the
others. A result is considered as inconsistent if the following condition
is valid

− ± > = …x y i m| |/ ε ε 2, 1, , .i i
2

y
2

(9)

The process of exclusion of one inconsistent result is repeated until the
consistency of results by the criterion χ2 is confirmed. The reference
value for the obtained largest consistent subset is determined by Eq. (7),
where the number of reliable laboratories m' is used instead of m. Clear
that the Procedure A can be reasonably applied only if the measurement
results provided by each participating laboratories are characterized by
a normal probability distribution.

One can see from the above brief overview that purely statistical
methods for interval processing have a lot of limitations imposed on
permissible properties of the input intervals, such as normality of
(series of) the data probability distributions, independence of ob-
servations, requirement of equidispersion, absence of outliers, etc. The
typical recommendation to overcome the difficulties would be to use
the non-parametric methods that, due to the reliance on fewer as-
sumptions, are more robust than the parametric ones [20,21]. However,
the non-parametric methods have their own shortcomings, in parti-
cular, even if they may work well on abnormal data, they have con-
siderably less efficiency in cases when the normal distribution well
enough approximates the measurement results. For example, in stan-
dard [13], in order to check the consistency of different laboratories
measurement results, there are used estimates of laboratory bias, per-
centage differences, ranks and percentage ranks based on calculation of
robust arithmetic mean and standard deviation. Authors of the docu-
ment [13] point out that many of these methods are unlikely to be
applicable when the number of participating laboratories is small (e.g.
m < 10). Besides, the recommended procedures for outliers’ detection
can lead to unnecessary data removal [14].

In this paper we propose the approach to interval data processing
that fundamentally does not use any their statistical properties and does
not employ any parametric (like t- and F-tests) and non-parametric
statistical significance tests. We call this approach interval data fusion
where the latter two words “data fusion” designate the popular field of
investigations and the former word refers to its interval-oriented spe-
cificity.

Data fusion is a process of joint processing of data on some object
obtained from multiple sources aiming to acquire fuller, more objective
and accurate knowledge of a characteristic under investigation than
knowledge derived from a single source. List of data fusion methods
usually includes mathematical statistics and probability theory (just in
the context discussed above), fuzzy sets theory [22], possibility theory
[3], Dempster-Shafer evidence theory [23], Bayesian inference [18],
different artificial intelligence methods [24], methods of voting and
preference (or rank) aggregation [2,25].

Under interval data fusion we will understand a procedure of shaping
an interval to be consistent with maximal number of given initial in-
tervals (not necessary consistent among each other) and to be with
maximal likelihood including a value x∗ that can serve as representative
of all the given intervals. Evidently, both the arithmetic mean x and the
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