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Abstract: In this paper we consider parameterized Lyapunov inequalities arising in robust
stability analysis of linear systems with structured uncertainty. A necessary condition of their
feasibility is presented. This condition is based on an optimization method developed by the
author. Its properties include being reasonably easy to check, and its coverage being adjustable

via the algorithm’s settings.

© 2015, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

Keywords: robust stability, Lyapunov method, matrix inequalities, polynomial inequalities,

nonlinear programming, global optimization.

1. INTRODUCTION

A large number of control theory problems can be for-
malized as optimization problems with polynomial matrix
inequality (PMI) constraints. Their general structure is as
follows:

£ = min f(@),
Gi(x) = 0, (1)
S Rn, Gl(x) — GlT(IL') c Rnixm"

where f(z) and elements of G;(z) are (not necessarily
convex) polynomial functions, and the inequality sign de-
notes positive semidefiniteness. In practice, they are often
written down in a more compact form with unknown vari-
ables being represented by matrices. Additional equality
constraints may also be added depending on a specific
problem. If only problem feasibility is relevant, the goal
function f(x) may be omitted.

1=1,...,m,

The most well-researched kind of such problems are linear
matrix inequality (LMI) systems. The simplest widely
known problem is verifying stability of a continuous linear
dynamic system by solving a Lyapunov inequality:

ATP+PA <O,

P >0,

P =PT eR™™",

with P being an unknown matrix. While this basic form
is fairly simple, it can quickly escalate into bilinear matrix
inequalities or the general polynomial form. For example,
synthesizing a stabilizing static output controller is a
bilinear problem:

(A+ BKC)'P+ P(A+ BKC) <0,
P >0, (2)
P:PT ERan7 KERlxm,
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where P and K are unknown matrices; A, B, and C are
appropriately sized given matrices.

Another related type of problem arises in analysis of sys-
tems with structured uncertainties. Consider the following
model:
o(t) = A(r(t)z(t) + B(r(t))u(t), 3)
y(t) = C(r(t)=(t) + D(r(t))u(t),
where x is the state, u is the input, y is the output,
r(t) € U is the uncertainty, Y = {r | U(r) > 0} with
U being a symmetric matrix polynomial; A, B, C, and D
are appropriately sized matrix polynomials.

The most basic problem related to such systems is de-
termining their stability. Relevant results are similar to
the ones for non-uncertain systems with an added layer of
complexity. In particular, it has been shown (Chesi et al.
(2003, 2009)) that (the open loop) system (3) with time-
invariant simplex uncertainty is asymptotically stable if
and only if the problem

Vrel:
A(r)YP(r) + P(r)A(r) <0, (4)
P(r) >0,

has a solution in the form of a homogeneous matrix polyno-
mial P(r) = P(r)T with a degree no greater than a known
value. This problem can be reduced to checking positive
definiteness of certain matrix polynomials, and then to a
number of linear matrix inequality (LMI) problems. Verifi-
cation of polynomial positive definiteness for all argument
values is associated with sum-of-squares (SOS) problems.
This class is dual to PMI problems; later in this paper we
demonstrate transformation of (4) to the PMI form and its
solution. For time-varying uncertainties, techniques based
on polynomial (non-quadratic) Lyapunov functions have
been proposed; see, e.g., Zelentsovsky (1994).

Other problems like finding Hs or H, system performance
also have their representations for uncertain systems. For
example, an upper bound of (3)’s Ho performance for
time-invariant uncertainty can be established as
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Yoo = inf 1y,
Vrel: (5)
P(r)>0, Q(r) >0,

with P(r) being a matrix polynomial, and

__[A0)TP() + PO)AG) PB()

Q) == B(r)"P(r) -1
L [c(r)tC(r) C(r) D(r)

72 [ D(r)*C(r) D(r)'D(r) |
All these tests can be converted to certain kinds of LMI
problems of varying conservativeness. A common theme
here, however, is that the size of these problems tends
to grow fast depending on sizes and degrees of matrix
polynomials in (3), as well as degree of P(r) and the kind
of LMI approximation used. (The latter two characteristics
also directly influence conservatism of the solution.) Com-
binatorial explosion of problem sizes is not uncommon in
this context.

In the current paper, we consider an approach to such
problems based on a solution method for problems in-
volving PMIs or non-polynomial forms. This approach
can be used to directly solve problems similar to (2), or
construct feasibility tests for forms like (4) and (5) without
explicitly constructing their LMI approximations. While
the optimization method used here is not global in the
general case, and said feasibility tests are not necessary
and sufficient, they are fairly easy to use, and the algorithm
can be tuned for various levels of search space coverage.

Section 2 provides additional background information on
some existing solution techniques for these problems. In-
formation on the new optimization method is provided in
section 3. Section 4 describes application of this method to
stability problems; section 5 shows a numerical example.
Additional types of more complex potential applications
are listed in section 6.

2. BASE METHODS

There exist a number of techniques applicable to various
kinds of the above problems. In this section, we briefly de-
scribe two of them to provide the general context of exist-
ing approaches; for a more detailed review, see, e.g., Chesi
(2010).

The main kind of problems that will play a role in this
paper, are PMI optimization problems (1). The solution
method most important here is described in Lasserre
(2001); Henrion and Lasserre (2005, 2006). This method is
based on constructing LMI relaxations, i.e., LMI problems

fr= myinz fiyi,
K3

My (y) =2 0,

My —4,(Gi,y) 20, i=1,...,m,

=1,
where k is the relaxation order; d; = [ deg Gi(z)]; y =
[yili = [bax(x) dp is the vector of moments of some

unknown measure y; b,.(z) is the monomial basis of the
space of polynomials having degrees up to r: b.(x) =
Moy o o 2y 22 2129 ... 22 ... 27 ... 27T vector

[fi]; is a representation of f(;) in this basis: f(z) =

Yo (be(x))ific Mi(y) and My_q,(Gi,y) are the moment
matrix and localizing matrices derived from

Mi(y) = / be()bi(2) T d g,

MialGoy) = [ (res@bia()?) © Gla) dp

For k£ — oo, minimum of the LMI relaxation approaches
the minimum of the original PMI problem; in practice,
for many problems they become equal for finite, relatively
small, values of k, and the vector of moments of PMI
solution becomes a solution to the LMI relaxation.

This global optimization method is quite powerful. How-
ever, it suffers from combinatorial explosion of LMI relax-
ation sizes (that can be traced back to the size of bay(z)).
The authors provide an example (Henrion and Lasserre
(2006), section IIL.E, example ACS8 taken from Leibfritz
(2004)) of a static output feedback problem with 9 states,
1 input and 5 outputs, where a naive attempt at LMI
relaxation construction would result in a problem with
33649 unknown variables in the very first iteration.

As an example of another type of problem, consider the
system

Veel:
P(z) >0,

where P(x) = P(x)T € R™" is a known matrix polyno-
mial of degree d, and the set U is a simplex U = {z € R" |
S x; = 1,; > 0}. As shown in Chesi et al. (2003),
a matrix polynomial P(x) = Z?:o H;(z), where H;(z) is
a homogeneous matrix polynomial of degree i, is positive
definite for all x € U if and only if

va € R"\{0} : H(z) >0,
H(z) = H(y)ly=(a2,.a2)7

d n d—i
i=0 i=1

This way the problem is converted to a similar one with
variable z no longer constrained by the simplex. A suffi-
cient condition can be formulated that requires H (x) to be
an SOS matrix polynomial. This check can be performed
by constructing an LMI relaxation for the problem. While
all steps are well defined, the procedure does have certain
issues—in particular, the same combinatorial explosion of
LMI sizes; for instance, the number of free variables in the
relaxation is $r(Cl, ,(rCr, ,+1) — (r + 1)CI 5.

(6)

3. ATOMIC OPTIMIZATION

For the method of solving PMI problems (1) described in
the previous section, a transformation has been proposed
in Pozdyayev (2013, 2014) that was aimed at significantly
reducing its computational complexity while maintaining
its key benefits for a class of problems related to control
theory, in particular, to the Lyapunov method.

The new optimization method has been named “atomic
optimization” due to being based on the idea of tracing so
called “atoms”—components of N-atomic measures pu—
instead of moments of these measures. The number N > 1
can be chosen relatively freely based on the essential



Download English Version:

https://daneshyari.com/en/article/712226

Download Persian Version:

https://daneshyari.com/article/712226

Daneshyari.com


https://daneshyari.com/en/article/712226
https://daneshyari.com/article/712226
https://daneshyari.com

