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a b s t r a c t

Coke quality has a critical role in the steelmaking industry. The aim of this study is to examine the com-
plex relationships between various conventional coal analyses using coke making index ‘‘free swelling
index (FSI)”. Random forest (RF) associated with variable importance measurements (VIMs), which is a
new powerful statistical data mining approach, is utilized in this study to analyze a high-dimensional
database (3961 samples) to rank variables, and to develop an accurate FSI predictive model based on
the most important variables. VIMs was performed on various types of analyses which indicated that
volatile matter, carbon, moisture (coal rank parameters) and organic sulfur are the most effective coal
properties for the prediction of FSI. These variables have been used as an input set of RF model for the
FSI modeling and prediction. Results of FSI model indicated that RF can provide a satisfactory prediction
of FSI with the correlation of determination R2 = 0.96 and mean square error of 0.16 from laboratory FSIs
(which is smaller than the interval unit of FSI; 0.5). Based on this result, RF can be used to rank and select
effective variables by evaluating nonlinear relationships among parameters. Moreover, it can be further
employed as a non-parametric reliable predictive method for modeling, controlling, and optimizing com-
plex variables; which to our knowledge has never been utilized in the fuel and energy sectors.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Coke has been the source of energy for around 70% of total steel
production in the world. In 2014, the European Commission pub-
lished an updated list of 14 new critical materials (metals, groups
of metals or minerals) that are essential for various regional indus-
tries, of which coking coal is a critical component [1]. The steel-
making industry controls an essential portion of energy
consumption in many countries as steel production is an energy
intensive procedure. In the blast furnace of steelmaking plants,
coke serves multiple tasks as a reagent of chemical reductant, fur-
nace burden support, and as a fuel. Coke is an expensive material
and, quantitatively, is the largest component integrated into the
blast furnace; therefore, the energy efficiency of steelmaking
plants significantly depend on the quality of coke [2–7]. Properties
of coal, as parent of coke, play an essential role in the metallurgical
performance of coke (coke quality), and thus the energy consump-
tion in the blast furnace. Feeding high quality coke to the blast fur-
nace will result in lower coke consumption, higher steel

productivity, and lower hot metal cost. Fundamentally, coal rank
parameters (volatile matter, moisture, carbon, etc.) and petro-
graphic composition (macerals) of coal are independent parame-
ters that control the quality of coke [2,4,5,8,9]. Coking quality of
coal can be determined by dilatation, fluidity, and Free Swelling
Index (FSI) of coke samples [4,5].

In the United States, cokeability of coal is determined by FSI test
(ASTM D720) [10]. FSI test can provide information regarding the
caking ability of coal samples. In this test, 1 g of a fresh grind coal
sample (�250 lm) in a standard sized silica crucible is heated
approximately at 820 ± 5 �C for 2.5 min by either electric or gas
furnace. Samples are cooled and the carbon residue (coke) is
removed to assess the coal’s swelling during heating. By comparing
the size and shape of the coke button with a series of standard out-
lines and scaling a value from 0 to 9 at an interval of 0.5, the coke-
ability of samples is assigned. Based on the FSI standard (ASTM
D720), swelling indexes of 0–2, 2–4, and 4–9 indicate weakly, med-
ium, and strong caking ranges, respectively [10]. There are a few
problems associated with the FSI measurement which lead to bias
in the result of this test: providing the proper heating rate in the
furnace, weathering of the sample (oxidation), and the size of sam-
ples (the amount of fine particles should be kept at a minimum)
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[11–13]. To overcome these challenges, statistical models based on
empirical data of coal properties are applied to study coke quality
more accurately, and to better control the parameters which
impact energy consumption in the blast furnace.

According to these considerations, a few statistical models
(regression and artificial neural networks (ANNs), Adaptive
neuro-fuzzy inference systems (ANFIS), and genetic algorithm
(GA)) have been used to evaluate the relationships between coal
compositions (proximate, ultimate, and petrographic analyses)
and its cokeability (FSI, coke reactivity index (CRI), and coke
strength after reaction with carbon dioxide (CSR)) [7,11]. More-
over, soft computing methods (ANNs, ANFIS, GA, etc.) as intelligent
techniques, are widely used in many areas in coal processing, such
as prediction of Hardgrove Grindability Index (HGI) [14–17], Gross
Calorific Value (GCV) [18,19], coal flotation [20–22], and desulfur-
ization [23–26]. Generally these models have a conceptual limita-
tion, since they can only determine relationships between input
and output, but never give any insight into the inter-
dependences among variables. In their calculation, the variances
of the conditional distributions for the dependent variables are
all equal and these models do not present variable importance
measurement (VIM). VIM helps to select the best subset of predic-
tors, this selection would lead to explain the model in the simplest
way (the smallest model), remove redundant variables (decrease
noise of predictions), and save time and energy by not measuring
redundant predictors. These facts would be more critical in model-
ing of energy resources (especially coal and oil, due to their hetero-
geneous properties). Therefore, variable selection is necessary for
the FSI modeling since involving all coal parameters as input in a
model can potentially improve the correlation coefficient (R2) of
the model, but does not necessarily mean that the model can pre-
cisely describe the FSI [27,28].

Random forest (RF) models can reliably overcome these draw-
backs. As a recent developed tree-based model, RF can identify
nonlinear approximation of relationships among variables even
for a high-dimensional database, and rank candidate predictors
based on their inbuilt VIM. RF can be applied for prediction and
classification of various problems including nominal, metric, and
survival responses based on results of VIM (best predictors). RF
models have several attractive features over other modeling meth-
ods, including: the most accurate and efficient nonparametric
learning algorithms available, VIMs even in the presence of high
levels of additive noise, highly accurate classifier, variables can
be both continuous and categorical, automatic calculation of gen-
eralization errors (low-bias and low-variation in prediction), gen-
eral resistance to overfitting, automatic handling of missing data,
and a small number of tunable parameters [29–38].

Although there are numerous studies on using RF method as a
new data mining tool, RF modeling and associated interpretations
(via VIM) are not yet widely used in the engineering fields, espe-
cially within the energy sector. The main purpose of this article
is to assess coke quality (FSI) based on various coal analyses (prox-
imate, ultimate, various sulfur forms and ash oxides analysis) for a
wide range of USA samples (3691 samples from 17 different states)
by RF. Modeling and VIMs were carried out using the Random For-
est ‘‘R” package.

2. Materials and methods

2.1. Database

Development of a realistic model for prediction of FSI requires a
comprehensive dataset to cover a wide variety of coal properties.
Such a model will be able to predict cokeability with a high degree
of validity. In this investigation, the dataset used to study the pro-

posed approaches was obtained from U.S. Geological Survey Coal
Quality (COALQUAL) database, open file report 97-134 [39]. A total
of 3961 set of coal samples including the proximate, ultimate,
oxide, and FSI analyses in as received basis were used. Analyses
were performed based on the standard ASTM test methods. The
procedures of sampling and analytical chemical methods can be
found on the following web address: http://energy.er.usgs.gov/
products/databases/CoalQual/index.htm. The results of various
analyses and their representative FSIs are presented in the supple-
mentary database. The number of samples for different states is
shown in Table 1.

2.2. Random forest

2.2.1. Variable importance measurements (VIMs)
The aim of variable importance measurement is to identify the

best subset between many variables to include in a model. VIMs
help to better understand the fundamentals of a process, with best
predictors. RF model can accurately predict a target, and cost can
be saved by not measuring redundant predictors. In RF methods,
the most efficient and advance VIM is the ‘‘permutation accuracy
importance (PAI)” measure [40–45]. The PAI is to quantify the
importance of predictors in function approximation. The PAI fol-
lows the rationale by determining the decrease accuracy of differ-
ences between the predicted value for a tree before and after
random permutation for each predictor variable (i.e. with and
without the association of each variable). In other words, PAI
destroys the original association of a variable with the response.
The average of differences over all trees determines the final
importance score of a variable. Large value of the PAI implies the
association between the predictor and the response is significant,
values around zero indicate that the prediction accuracy would
not increase with association of those variables and they have no
value for predicting the response [29,42,46].

In summary, the computation of the PAI consists of the follow-
ing steps: 1. Compute the out-of-bag (OOB) accuracy of a tree (the
excluded examples construct called out-of-bag dataset). 2. Per-
mute the predictor variable of interest in the OOB instances asso-
ciated with a tree in the forest. 3. Recompute the OOB accuracy
of the tree (destroying the information content of the covariate
using the permuted variable). 4. Determine the error between
the original and recomputed OOB accuracy. 5. Repeat step 1–4
for each tree, the average OOB difference over all trees is the indi-
cation of the overall importance score [31,42,47,48]. The PAI mea-
surements have several advantages over other variable selection
methods; it is unbiased, broadly applicable, and it considers the
impact of each predictor individually as well as in multivariate
interactions with other input variables [40,41,46,49]. For VIMs
(variable selection), the reference implementation of PAI is avail-
able in the ‘‘R” software package (a free software package for sta-
tistical computing) which has been used in this investigation.

Table 1
Number of samples for the different states.

State N State N

Alabama 733 Ohio 581
Colorado 96 Oklahoma 29
Illinois 16 Pennsylvania 354
Indiana 97 Tennessee 51
Kansas 21 Utah 66
Kentucky 798 Virginia 320
Iowa 53 West Virginia 366
Missouri 65 Wyoming 16
New Mexico 29
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