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a b s t r a c t

In representational measurement theory, the current theory of all measurements, calibration and sam-
pling processes are assumed to be a linear transformation of the coordinate system, of no effect. In this
paper calibration and sampling are shown to be independent non-linear processes which do change mea-
surement results. Relational measurement theory is developed to include calibration and sampling. The
measurement changes caused by calibration and sampling are proven to be equal to the quantum mea-
surement disturbance described by the universal uncertainty relation which has been verified by exper-
iments. Therefore relational measurement theory explains the measurement disturbance in quantum
mechanics.
� 2016 The Author. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

In representational measurement theory [1] a measurement
result is a magnitude of equal intervals. In this paper relational
measurement theory [2] defines a measurement result as a sum of
intervals, where each interval’s magnitude is modified by both cal-
ibration and sampling processes. The application of relational mea-
surement theory to quantum systems explains the disturbance of
one observable when measuring a second observable [3]. In this
paper: sampling is the division of a continuous observable into dis-
crete intervals [4], ameasurement is the sum of the projection of all
these discrete intervals onto the measuring apparatus intervals [5],
and calibration is the correlation of sets of the measuring apparatus
intervals to externally defined intervals [6]; together these three
processes produce a measurement result.

In von Neumann’s development of a measurement in Hilbert
space [7], the possible discrete elements are equivalent (not neces-
sarily equal) and of varying probability. Each such quantum ele-
ment (in one dimension) may be seen as one of a measuring
apparatus’ minimum intervals in the same dimension. In represen-
tational measurement theory, these elements/intervals are
assumed to be equal. Then the standard deviation of a distribution
of these elements/intervals is zero.

The Heisenberg Uncertainty Relation (HUR) [8] identifies an
inconsistency when the elements/intervals of a measurement sys-
tem are assumed to be equal. In this paper the standard deviations
in the HUR, shown in Eq. (7), are proved to be of the magnitudes of

the observable’s intervals, not of the magnitude of the observable,
and are never zero. In the relational measurement view of the HUR,
each observable’s standard deviation is a measure of a distribution
of calibration corrections. These calibration corrections appear as a
measurement disturbance of the second observable when both
observables are correlated by calibration corrections to the same
reference.

Sections 5 develop relational measurement theory by applying
concepts from classical metrology. Sections 6 and 7 apply rela-
tional measurement theory to the HUR, proving that the standard
deviation of a distribution of discrete intervals in the HUR equals
the effect of calibration on experimental measurement results.

In 2003, Ozawa [3] developed the universal uncertainty rela-
tion, Eq. (12), which is shown to support relational measurement
theory. His universal uncertainty relation, with a minor modifica-
tion, formalizes both calibration and sampling indeterminacy [9].
In Appendix A, experiments by others [10] are presented which
verify the universal uncertainty relation and therefore relational
measurement theory.

2. Relational measurements

A relational measurement system defines the mean measurement
result as the product of measurement magnitude and the standard
deviation of the measurement intervals due to calibration and
sampling processes (4).

Fig. 1 identifies m intervals of iu, a relational measurement
result, relative to m intervals of i, a representational measurement.
Sampling, often treated as part of a measurement process, divides
the observable into increments (Ds) indicated in Fig. 1 by short
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lines at right angles to the observable. A measurement is indicated
by downward arrows which project the intervals (usually two or
more sample increments) onto the measuring apparatus to be
summed. Calibration of the measuring apparatus intervals to u (a
reference unit) is indicated by the inward arrows. Calibration is
represented in an orthogonal plane as it is independent of sam-
pling and measurement. Both planes have a common basis, the
measuring apparatus.

Example: X is a rod’s length (the observable). X is experimen-
tally defined as a magnitude (m) of intervals each correlated to a
minimum reference unit x (in this example a centimeter). The
magnitude of each correlated interval is ix. The representational
measurement (normalized) magnitude of the intervals of X is
i = 1/m. The experimental measurement result precision [11] (local
variation) is ±Dsxi per interval i [12]. The measuring apparatus is a
meter scale which defines the magnitude of the intervals, where
each interval is calibrated to x, the reference interval. A calibration
process makes feasible comparisons between independent mea-
surement results. The measured accuracy [11] (relative variation)
of each ix is determined by calibration to x. The differences
between mi, mx and mix are not treated in representational mea-
surement theory.

Applying Fig. 1, Dxi = calibration variation of each interval and
Dsxi = sample increment of each i interval, the calibration (1) and
sampling (2) operators are:

x� Dxi ¼ ix ð1Þ
i� Dsxi ¼ ix ð2Þ

The indeterminacy (the sum of calibration and sampling varia-
tion) of ix is:

Dix ¼ ð�DxiÞ þ ð�DsxiÞ ð3Þ
In representational measurement theory, this indeterminacy is

assumed to reduce to zero as accuracy and precision move
toward perfect [13]. This is not experimentally possible. In all dis-
crete measurements of continuous observables there is a non-
cancelable minimum interval indeterminacy minDix < the product
of the speed of light and the reciprocal of the highest sampling
frequency observed. The higher the sampling frequency, the
smaller |minDix| (the vertical bars represent an absolute value).
When all other indeterminacy is nulled, the magnitude of each
interval ix randomly deviates by just less than ±Dsxi, the sampling
increment. Therefore Dxi cannot completely cancel Dsxi.

Eq. (4) presents four different functions which represent the
observable hXi (where brackets indicate the mean of X) based upon
three different assumptions.Z

w�bXwdx !
Xi¼m

i¼1

i !
Xix¼m

ix¼1

ix ffi m½rðixÞ þ rðDsxiÞ� ¼ hXi ð4Þ

The first function is from quantum mechanics [14]:
R
w�bXwdx.

w⁄ is the complex conjugate of the state vector w (observable) of

x and bX is the operator of X, therefore
R
w�bXwdx (assumes infinites-

imal sampling increments) represents the mean of a continuous
observable. Normalized sampling (assumes i = x) transformsR
w�bXwdx to a discrete measurement [15], shown as the second

function:
Pi¼m

i¼1 i which is the rod’s length, m intervals of i.

Calibration (1) transforms
Pi¼m

i¼1 i to the third function:
Pix¼m

ix¼1 ix
which is the rod’s length in ix intervals and is the current classical
metrology model [16]. When the sampled increment Dsxi � ix
(assumed in classical metrology),

Pix¼m
ix¼1 ix is close to the fourth

function:m½rðixÞ þ rðDsxiÞ� as rðDsxiÞ < 1 sampled increment
(derived below in Section 3).

The fourth function, m½rðixÞ þ rðDsxiÞ�, does not require these
three assumptions. This function sums over the common basis
both the calibration (1) and sampling (2) operators and is the only
function of the four which represents the mean of the experimen-
tal measurement results of a continuous observable at all experi-
mentally possible sampling frequencies.

3. Sampling and calibration examples

Consider a digital voltmeter (measuring apparatus) where 00.01
is the voltmeter’s display of the minimum interval. Measuring a
fixed voltage (observable) multiple times produces a stochastic
distribution of measurement results. The maximum indeterminacy
of this distribution is specified by the manufacturer, for all volt-
meters of this model, to be ±1% indeterminacy. To maintain the
±1% of a 0.01 V measurement requires ±0.0001 V precision, i.e.,
each interval is between 0.0099 and 0.0101 V. The ±1% indetermi-
nacy allows a laboratory with multiple voltmeters to make compa-
rable measurements or compare measurements with other
laboratories. To achieve this precision, a sampling increment of
0.0001 (Dsxi) V or less is required. The precision of a measurement
result is ultimately limited by the Planck constant, the minimum
possible sampled increment, and is never zero.

A stochastic distribution of voltmeter measurement results
occurs when applying the 1.00000 V observable (continuous rela-
tive to the sampling increment of 0.0001 V) to many of the same
model voltmeters. Indeterminacy of the continuous observable less
than the sampling increment is not identifiable. The sampling pro-
cess causes each of the 100 (m) 0.01 intervals to have an indeter-
minacy of Dsxi = �0.0001, 0.0000 (<Dsxi) or, +0.0001. Less than
Dsxi is not a zero state, but the transition between +Dsxi and �Dsxi.
Therefore <Dsxi statistically occurs less often than either ±Dsxi and
the standard deviation of this sampling distribution is always
< |Dsxi|.

In this sampling example, the three possible interval magni-
tudes (from (2)) are: i� Dsxi ¼ ix ¼0.0099i, 0.0100i or 0.0101i. This
identifies 3100 combinations of the 100 intervals which establish
the probability of the 200 valid measurement results with values
between 0.9900 to 1.0100 and within the defined ±1% precision.
The distribution of the 3100 possible combinations of the 100 inter-
vals will, as the number of voltmeter measurements increase, con-
verge to a normal distribution (bell shaped curve) as described by
the central limit theorem. Such a distribution (i.e., sampling noise)
occurs in all measurement results and is sometimes identified in
the literature as 1/f noise, where f represents the sampling
frequency in [17].

As a further example, an observable’s angular rotation is deter-
mined by counting the teeth of an attached gear with m teeth per
2p rotation. When counted by an observer, the gear teeth are
assumed to be intervals of equal width and no indeterminacy
appears. But a perfect measurement of angular rotation by using

Fig. 1. Relational measurement system.
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