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Abstract: In control related studies, convex liftings have been of use to solve inverse parametric
linear/quadratic programming problem. This paper presents a so-called convex liftings based method
for robust control design of constrained linear systems affected by bounded additive disturbances. It will
be shown that a geometrical construction as convex lifting can be used in optimization-based control
design to guarantee robust stability and recursive feasibility in a given controllable region of the state
space. Finally, a numerical example will be considered to illustrate this method.

1. INTRODUCTION

Robust control plays an important role in control theory. In
particular, for constrained discrete-time linear systems, robust
control design in the presence of bounded additive disturbances
and/or polytopic uncertainty, has been of interest in countless
studies. Different design techniques have been put forward as
in Kothare et al. [1996], Scokaert and Mayne [1998], Mayne
et al. [2005], Rakovic et al. [2012], Bemporad et al. [2003],
Grancharova and Johansen [2012], Gutman and Cwikel [1987],
Blanchini [1994, 1995], Nguyen [2014], etc.

Linear matrix inequality (LMI) has been early applied in model
predictive control (MPC), in Kothare et al. [1996] to design ro-
bust controller in the presence of polytopic model uncertainties.
This method requires at each sampling time solving a com-
putationally demanding LMI problem. Subsequently, based on
dynamic programming, min-max optimization based method
in Scokaert and Mayne [1998] has solved an MPC problem
for discrete-time, linear invariant systems subject to bounded,
additive disturbances. This method aims to minimize at each
sampling instant, the worst case of cost function, subject to
exponentially increasing set of constraints once the prediction
horizon increases. Later, it is shown that a robust linear MPC
problem can be alternatively solved via parametric convex pro-
gramming to design explicit robust control in the presence of
bounded additive disturbances and polytopic model uncertain-
ties, see e.g. Bemporad et al. [2003]. Also, approximation of
robust explicit control laws for nonlinear MPC in the presence
disturbances has been studied in Grancharova and Johansen
[2012]. On the other hand, tube based MPC has been originated
in Mayne et al. [2005] and developed in Rakovic et al. [2012],
providing new insight in robust control design. Another line
of robust control was originated in Gutman and Cwikel [1987]
based on positively invariant sets and has bloomed via different
studies e.g. Blanchini [1994], Nguyen [2014] showing their
simple formulations and easy implementations.

In the same line with the last studies, this paper introduces
another approach based on convex liftings which can serve as
Lyapunov functions. This method will be proved to guarantee
the recursive feasibility and closed loop stability. In terms
of implementation, it only requires solving a simple linear
programming problem at each sampling instant.

Convex liftings have been used in studies related to structural
properties of parametric convex programming based control
laws. To our best knowledge, the present approach is the first
attempt to use convex lifting as a direct design method.

Notation

Throughout this paper, N,N>0,R,R+ denote the set of non-
negative integers, the set of strictly positive integers, the set
of real numbers and the set of non-negative real numbers,
respectively. For ease of presentation, with a given N ∈ N>0,
by IN , we denote the index set: IN = {i ∈ N>0 | i ≤ N} .
A polyhedron is the intersection of finitely many halfspaces. A
polytope is a bounded polyhedron. If P is an arbitrary polytope,
then by V(P ), we denote the set of its vertices. If S is a finite
set, then conv(S) denotes the convex hull of S . Also, for a given
set S , by int(S), we denote the interior of S . Further, we use
dim(S) to denote the dimension of its affine hull.

Given a set S ⊂ Rd and a matrix A ∈ Rd×d, then AS is defined
as follows: AS = {As | s ∈ S} .
Given two sets S1,S2 ⊂ Rd, their Minkowski sum is denoted
by S1 ⊕ S2 and is defined by:

S1 ⊕ S2 =
{
x ∈ Rd | ∃y1 ∈ S1, y2 ∈ S2 s.t. x = y1 + y2

}
.

Also, S1\S2 is defined as follows:

S1\S2 :=
{
x ∈ Rd | x ∈ S1, x /∈ S2

}
.

Further, given two different points x, y ∈ Rd, we use ρ(x, y) to
denote the Euclidean distance between x and y. If y = 0, this
distance is briefly written by |x|. Moreover, given a set A ⊂ Rd

and a point x ∈ Rd, we denote ρA(x) = infy∈A ρ(x, y). It
is clear that if x ∈ A, then ρA(x) = 0. The distance from a
point to a set is also known as the Hausdorff distance and can
be understood as a particular case of the distance between two
sets.

This paper is organized in five sections. The problem statement
is presented in Section 2. Our main results will be introduced in
Section 3. An illustrative example will be considered in Section
4. The final section summarizes the contribution of the present
paper.
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additive disturbances. This method aims to minimize at each
sampling instant, the worst case of cost function, subject to
exponentially increasing set of constraints once the prediction
horizon increases. Later, it is shown that a robust linear MPC
problem can be alternatively solved via parametric convex pro-
gramming to design explicit robust control in the presence of
bounded additive disturbances and polytopic model uncertain-
ties, see e.g. Bemporad et al. [2003]. Also, approximation of
robust explicit control laws for nonlinear MPC in the presence
disturbances has been studied in Grancharova and Johansen
[2012]. On the other hand, tube based MPC has been originated
in Mayne et al. [2005] and developed in Rakovic et al. [2012],
providing new insight in robust control design. Another line
of robust control was originated in Gutman and Cwikel [1987]
based on positively invariant sets and has bloomed via different
studies e.g. Blanchini [1994], Nguyen [2014] showing their
simple formulations and easy implementations.

In the same line with the last studies, this paper introduces
another approach based on convex liftings which can serve as
Lyapunov functions. This method will be proved to guarantee
the recursive feasibility and closed loop stability. In terms
of implementation, it only requires solving a simple linear
programming problem at each sampling instant.

Convex liftings have been used in studies related to structural
properties of parametric convex programming based control
laws. To our best knowledge, the present approach is the first
attempt to use convex lifting as a direct design method.

Notation

Throughout this paper, N,N>0,R,R+ denote the set of non-
negative integers, the set of strictly positive integers, the set
of real numbers and the set of non-negative real numbers,
respectively. For ease of presentation, with a given N ∈ N>0,
by IN , we denote the index set: IN = {i ∈ N>0 | i ≤ N} .
A polyhedron is the intersection of finitely many halfspaces. A
polytope is a bounded polyhedron. If P is an arbitrary polytope,
then by V(P ), we denote the set of its vertices. If S is a finite
set, then conv(S) denotes the convex hull of S . Also, for a given
set S , by int(S), we denote the interior of S . Further, we use
dim(S) to denote the dimension of its affine hull.

Given a set S ⊂ Rd and a matrix A ∈ Rd×d, then AS is defined
as follows: AS = {As | s ∈ S} .
Given two sets S1,S2 ⊂ Rd, their Minkowski sum is denoted
by S1 ⊕ S2 and is defined by:

S1 ⊕ S2 =
{
x ∈ Rd | ∃y1 ∈ S1, y2 ∈ S2 s.t. x = y1 + y2

}
.

Also, S1\S2 is defined as follows:

S1\S2 :=
{
x ∈ Rd | x ∈ S1, x /∈ S2

}
.

Further, given two different points x, y ∈ Rd, we use ρ(x, y) to
denote the Euclidean distance between x and y. If y = 0, this
distance is briefly written by |x|. Moreover, given a set A ⊂ Rd

and a point x ∈ Rd, we denote ρA(x) = infy∈A ρ(x, y). It
is clear that if x ∈ A, then ρA(x) = 0. The distance from a
point to a set is also known as the Hausdorff distance and can
be understood as a particular case of the distance between two
sets.

This paper is organized in five sections. The problem statement
is presented in Section 2. Our main results will be introduced in
Section 3. An illustrative example will be considered in Section
4. The final section summarizes the contribution of the present
paper.
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2. PROBLEM SETTING

In this paper, we concentrate on the class of discrete-time linear
invariant systems, affected by bounded additive disturbances:

xk+1 = Axk +Buk + wk, (1)
where xk, uk denote the state, control variables at time k, wk

stands for the disturbance at time k. The state, control variables
and the disturbances are subject to constraints:

xk ∈ X ⊂ Rdx , uk ∈ U ⊂ Rdu , wk ∈ W ⊂ Rdx , (2)
where dx, du ∈ N>0, X,U,W are polytopes. It is assumed that
X,U,W contain the origin in their interior.

The aim is to find a state feedback control law which exhibits
robustness with respect to additive disturbances such that the
closed loop is robustly stable. It is clear that if disturbance wk is
unknown for the computation of control action at instant k, one
cannot expect to be able to guarantee the asymptotic stability of
the origin. The asymptotic stability is replaced with an ultimate
boundedness notion Khalil [2002], Kofman et al. [2007]. The
following classical assumption is necessary for the existence of
stabilizing control laws.
Assumption 2.1. The pair (A,B) is stabilizable and full-state
measurement is available for control.

3. CONVEX LIFTINGS BASED CONTROL DESIGN

3.1 Disturbance invariant sets with respect to a stabilizing
control law

Positively invariant sets have been studied over three decades.
Due to their relevance in control theory, they turn out to be
of help in many control related studies e.g. Bitsoris [1988],
Blanchini and Miani [2007], Rakovic et al. [2012], Nguyen
[2014],

In particular, disturbance invariant sets are meaningful in robust
control design for system (1). Some remarkable results on the
structure, properties and algorithms for positively invariant sets
can be found in Kolmanovsky and Gilbert [1998], Rakovic et al.
[2005, 2004].

The definition of a positively invariant set for linear system (1)
is recalled below.
Definition 3.1. Given the dynamic system (1) subject to con-
straints (2), with respect to Assumption 2.1, a set Ω is called
positively invariant with a linear control law uk = Kxk ∈ U if
and only if (A+BK)Ω⊕W ⊆ Ω.

Such an Ω defined in Definition 3.1 is alternatively called
disturbance invariant set. Algorithms for approximating max-
imal and minimal disturbance invariant sets can be found in
Kolmanovsky and Gilbert [1995, 1998], Rakovic et al. [2005],
Gilbert and Tan [1991]. It will be considered in the develop-
ments, presented next, that such approximations are available
for control design.

Also, for the linear system (1) satisfying Assumption 2.1, it
is easy to find a linear stabilizing state feedback uk = Kxk

via the solution of the Riccati equation with a pre-chosen,
positive semidefinite weighting matrices, Q,R. The influence
of disturbances can be taken into account in the design of
unconstrained stabilizing linear feedback Boyd et al. [1994].

Note that in the presence of persistent disturbances, Ω is con-
sidered as a full-dimensional set. Otherwise, if system (1) is not

affected by additive disturbances and/or is subject to polytopic
model uncertainties, Ω = {0} can also be chosen. However,
these cases are beyond the scope of this paper.

3.2 Domain of attraction

A domain of attraction is known to be a subset of all points
which can be driven to a target set. To guarantee the conver-
gence to a disturbance invariant set Ω, a domain of attraction
denoted by X , should ensure that for any point belonging to X ,
there always exists control law satisfying constraint (2), which
steers the state to Ω. The following definition of a contractive
set, inherited from Definition 2.5 in Blanchini [1994], is of help
for our development.
Definition 3.2. Given λ, 0 ≤ λ ≤ 1, a set S is called
λ−contractive if for any x ∈ S ⊆ X, there exists u(x) ∈ U
such that (Ax+Bu(x))⊕W ⊆ λS. If λ = 1, S is said control
invariant.

According to Blanchini [1994], the maximal λ−contractive
set, denoted by Pλ, is defined as the set containing all
λ−contractive sets for system (1) subject to constraint (2). A
computation of this set is recalled as follows.
S1 = X,
Si+1 = {x ∈ X | ∃u(x) ∈ U, s.t.

(Ax+Bu(x))⊕W ⊆ λSi} , for i ∈ N>0,

Pλ = S∞.

Details about algorithms for computation of Pλ can be found
in Blanchini [1994], Kerrigan [2001]. For our development, we
will use the maximal λ−contractive set Pλ for 0 ≤ λ < 1, as a
domain of attraction; i.e. X = Pλ.

3.3 Convex lifting construction

Convex lifting is in principle a purely geometrical notion. In
control theory, the optimal cost function to a parametric linear
programming problem, known as a convex lifting, is used to
facilitate the implementation of explicit control laws, see e.g.
Baotic et al. [2008], Jones et al. [2006]. Subsequently, it has
been of use to solve inverse parametric linear/quadratic pro-
gramming problem in Nguyen et al. [2014b,a, 2015]. It is worth
stressing that the term ”convex function” deployed in Hempel
et al. [2013, 2015] completely differs from a convex lifting
defined here. Before recalling its definition, some additional
notation will be introduced.
Definition 3.3. A collection of N ∈ N>0 full-dimensional
polyhedra denoted as {Xi}i∈IN

, is called a polyhedral partition
of a polyhedron X ⊆ Rdx if:

•
⋃

i∈IN
Xi = X .

• int(Xi)
⋂

int(Xj) = ∅ with i �= j, (i, j) ∈ I2
N ,

Also, (Xi,Xj) are called neighbours if (i, j) ∈ I2
N , i �= j and

dim(Xi∩Xj) = dx−1. Also, if X is a polytope, then {Xi}i∈IN

is called a polytopic partition.
Definition 3.4. For a given polyhedral partition {Xi}i∈IN

of a
polyhedron X ⊆ Rdx , a piecewise affine lifting is described by
the function z : X → R with:

z(x) = aTi x+ bi for any x ∈ Xi, (3)
and ai ∈ Rdx , bi ∈ R, ∀i ∈ IN .
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