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a b s t r a c t

The measurement of physical parameters conducted on a central heat distribution network was used to
determine heat loss using pipe dimensional analysis. All the developed models include all relevant phys-
ical parameters which are expected to have an impact on heat loss. The interdependence of these param-
eters is expressed as a function of similarity criteria. When creating a mathematical model, the so-called
Buckingham p theorem is used. The model consists of the dependency of only two parameters, which
greatly simplifies the currently-used procedure of calculation based on heat transfer theory. The pro-
posed way of expressing heat loss is further interpreted in the article by two simpler modifications. In
the simplest variant, the interdependence of dimensionless criteria is subtracted from the original dia-
gram. The results presented in this article are valid for a diameter 125 mm (DN125) overhead network
with insulation. The scope of the model was validated for ambient temperatures of �20 to +30 �C and
a transported water temperature from 40 to 70 �C.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The determination of heat loss from a pipework system is a
matter of serious concern for distributors of heat and hot water.
At present, dealing with such losses is based on the heat transfer
theory [1–3].

Based on detailed analysis, the analytical procedure formulating
the heat losses is accompanied by complex calculation of the linear
specific heat resistance of a given heat network. This resistance
depends on several factors: the external temperature of the con-
ducted material, ambient temperature, the quality of insulation
thickness, the material and the nominal diameter of the pipe.
Moreover, in order to formulate the amount of heat losses, it is
essential to identify the heat transfer coefficient of the running
water and that of the environment in which the supply is con-
ducted. The heat transfer coefficient inside the transfer network
depends mainly on the temperature of the medium, but also
depends on the nature of the flow [4–7]. The external heat
exchange coefficient consists of two parts that are linked to con-
vection (forced or free) as well as to radiation. If the distribution
is led via a free environment (unrestricted area), there are equa-

tions for determining both parts of the given coefficient [8]. If
the distribution is conducted underground (through pipelines or
without), there is no available precise method of expressing the
coefficient of heat transfer to the surroundings. In this case, the
heat loss of the distribution network could be obtained, for exam-
ple, by the balance method [9,10]. The disadvantage of this method
is that in very short networks equipped with quality thermal insu-
lation, it is not possible, with the existing measurement technique
installed on the network, to obtain the correct information on the
temperature gradient with the required accuracy [10]. Moreover,
older networks completely lack permanently installed equipment.
The previously mentioned method requires one to know the flow
rate of the distribution network at the time the temperature gradi-
ent is measured, which represents a further complication.

The calculation of heat losses based on heat and mass transfer
theory is fairly complicated. Therefore, this is not used by hot
water distribution system operators. The paper presents a simpler
method based on dimensional analysis [11–14].

2. Mathematical modelling

The first phase of modelling considered all the physical param-
eters on which heat losses depend. In accordance with the rules
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concerning the application of dimensional analysis, a dimensional
matrix of solutions served as a base to subsequently obtain the
dimensionless criteria. These criteria describe the heat losses. Indi-
vidual values of these criteria are determined from direct measure-
ment on the DN125 network in various operating modes for
12 months. The testing network is above-ground.

In the second phase of the model construction, an interdepen-
dence of dimensionless arguments was created, valid for a range
of temperatures of the transporting water heating systems
(40–70 �C) and the ambient temperature range (from �20 to
+30 �C). This temperature range corresponds to winter as well as
to summer heat network operation. Based on the drawn-up depen-
dency of dimensionless arguments, it is possible to easily express
the heat loss of any heat distribution system. In order to obtain
specific values of the intercept constant and the regression
coefficient of a given model, it is necessary to follow the procedure
recommended and described below.

In the third phase, based on the stated dimensionless argu-
ments, a simplified mathematical model was developed for deter-
mining heat losses, particularly suitable for the heating system
operators.

Based on the experience of heating network operators and
information currently known in literature, from all the relevant
variables that influence heat losses in a heat distribution system,
those parameters which characterise these losses and which are
easily measurable under normal operational conditions were
selected.

Heat loss from a pipeline depends upon the quality and thick-
ness of insulation placed on the pipes. The quality of the insulation
is contained within the thermal conductivity of the insulation kins.
In the mathematical model, the thickness of the insulation is
included in the solution via the dimensions which are shown in
Fig. 1. In selected relevant variables, the thickness of the insulation
itself is not applicable, because it applies that sins = (d3 � d2)/2
(Fig. 1). The thermal conductivity of the pipeline material kpi (steel)
is irrelevant. This coefficient does not appear in the presented
mathematical model. It is used if heat loss is calculated using bal-
ance equations based on heat andmass transfer. For all steel pipeli-
nes, the value of the mentioned coefficient is considered to be circa
58 Wm�1 K�1. Water with temperature Ti transfers heat to the
pipeline and this heat, when using heat transfer theory for calcula-
tions, is expressed by the heat transfer coefficient ac,i. Heat losses
to the ambient environment with temperature Te are, in the stated
method, represented by heat transfer coefficient ac,e.

The complete physical equation, expressing the dependence of
the relevant variables, can be expressed as

u ¼ ðP; T i; Te;d1;d2;d3; kins; t; lÞ ¼ 0 ð1Þ

where P – heat power dissipation (W), Ti – transported water tem-
perature of (K), Te – temperature of the ambient environment (K), d1
– inner diameter of steel pipework (m), d2 – outer diameter of steel
pipework (m), d3 – outer diameter of insulation (m), kins – thermal
conductivity of insulation (Wm�1 K�1), t – water flow velocity
(m s�1), l – length of pipework (m).

Based on the dimensional diversity of the relevant variables
they will create groups, i.e.

pi ¼ Px1 � Tx2
i � Tx3

e � dx4
1 � dx5

2 � dx6
3 � kx7ins � tx8 � lx9 ð2Þ

where from x1 to x9 are exponents. A positive value of the exponent
means that the physical quantity will be located in numerator of the
dimensionless criteria. In case of negative value of the exponent the
physical quantity will be in the denominator.

Dimensional matrix A of the given equation with basic units
consists of n = 9 columns. The number of rows in the matrix corre-
sponds to the number of basic units and equals to m = 4. Matrix A
has the following form

ð3Þ

If the number of relevant variables n = 9 and the level of the
matrix h = 4, then i = n � h, i.e. we can create five (4) dimensionless
arguments. Subsequently, a functional dependency will be created.
In the given matrix, the dimension of temperature in the selection
of the relevant variables occurs twice in total. The dimension of
length is found four times. From the above findings, four simplex
(similarity criteria) result directly, the form of which is as follows

p1 ¼ T i

Te
ð1Þ

p2 ¼ d1

l
ð1Þ

p3 ¼ d2

l
ð1Þ ð4Þ

p4 ¼ d3

l
ð1Þ

In terms of dimensional analysis, a rectangular matrix (3) can be
divided into two parts. The first part of the matrix (P) contains the
number of columns h = 8 and n = 4 rows, while the columns of the
matrix must be so selected that it possesses a non-zero determi-
nant (DP – 0). This corresponds to a vector’s distribution of
unknown variables xi. Its designation is R. For matrix P and the vec-
tor of unknown variables, R applies [5,10]

P � R ¼ ð�1Þ � Q � S ð5Þ
where Q is the vector of the matrix with a number of columns h = 1
and a number of rows n = 4. Designation S is for the vector of
unknown parameters with a number of columns h = 1 and a number
of rows n = 1. Eq. (5), expressed by using Eqs. (2) and (3), can be for-
mulated in the following form (6)

0 0 0 0 0 1 0 0
0 0 1 1 1 1 1 1
0 0 0 0 0 �3 �1 0
1 1 0 0 0 �1 0 0

���������

���������
�

x2
x3
x4
x5
x6
x7
x8
x9

�������������������

�������������������

¼ ð�1Þ �

1
2
�3
0

���������

���������
� kx1k ð6Þ

Fig. 1. Selected physical parameters for model construction (1 – hot water, 2 – steel
pipe, 3 – insulation, 4 – PE-HD outer).
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