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Abstract: Nowadays Linear Fractional Transformations (LFT) and the Structured Singular Value (mu)
are very well established concepts for respectively modeling uncertain systems and to perform robust
analyses. Despite their ample use in academia and industry during the last 30 years, and the availability
of consolidated software toolboxes, their introduction to a new industrial collaborator is not without
angst. In this article, the steps followed to transfer this technology to the GNC group at ELV, in charge
of the VEGA atmospheric launcher, are presented. The aim of the transfer was to introduce worst-case
analysis tools into the VEGA verification and validation process as a complement to the standard LTI
gain/phase margin analyses and the nonlinear simulation-based Monte Carlo campaigns. The successful
transfer hinged on the reconciliation of the following two facets: (i) the physical behavior of the system
with the LFT model capabilities, and (ii) the classical design experience from the VEGA GNC group

with the results from the robust mu analyses.
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1. INTRODUCTION

A concept widely used in robust control is the structured sin-
gular value u, which analytically evaluates the robustness of
uncertain systems Doyle, J. (1982); Doyle, J. et al. (1991);
Packard, A. and Doyle, J. (1993); Zhou, K. et al. (1996). A key
aspect on the application of u is the development of a proper
LFT model. By proper it is meant a model that captures the
critical parametric behavior of the nonlinear system under con-
sideration within a complexity that still enables the application
of the u analysis algorithms.

LFTs and u have been used in academia and industry during the
last 30 years, basically since the appearance of the first version
of the toolbox from Balas, G.J. et al. (1998) in July 1993. Its
introduction to industry was very quick following a series of
hands-on workshops by the developers at a number of compa-
nies dealing with complex, uncertain systems, e.g. aerospace.
The use of these concepts, methods and tools was consolidated
through practice and nowadays is ingrained in those industrial
groups that have had the necessity and opportunity, for example
for satellites (see references Charbonnel, C. (2010); Pittet, C.
and Arzelier, D. (2006)) and the European Automated Transfer
Vehicle (ATV), reference Ganet-Schoeller, M. et al. (2009).

Still, despite its wide acceptance and use, it is not without
difficulty to try introducing them into the design and analysis
process of other industrial groups. Much of this is due to human
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resources reasons such as: staff rotation, experts’ availability
and management risk-adverse decisions. But there are also re-
search and development hurdles, which can be summarized in
two facets: (i) clear alignment of the physical behavior of the
system with the LFT model capabilities, and (ii) reconciliation
of classical design experience with the results from the robust
U analyses. In addition, despite well document manuals, de-
tailed tutorials and many publications, there is always the need
of a tailored-made benchmark and code scripts that must be
transferred to the industrial design group in order for them to
really introduce the techniques in their verification and valida-
tion (V&V) process. For example, in reference Jang, J.W. et al.
(2008), by a renown group of control experts, a simple mass-
spring-damper case was used to illustrate the “limitations” of u
in evaluating its potential for the Ares I launcher programme. It
was claimed that u suffered of conservativeness and had to be
used with care even for this simple case. But actually, it is easy
to show that if a proper LFT model is used then p correctly
identifies a worst-case right on the stability boundary of the
(damping, spring) coefficients plane.

Thus, the relevance of this article is precisely in presenting the
transfer of these techniques to the GNC group of VEGA, the
new European Small Launch Vehicle developed under respon-
sibility of ESA by ELV as the prime contractor —which suc-
cessfully flew its 4'" qualification flight on 11" February 2015.
The benchmark selected is a simplified planar launcher motion
during atmospheric phase which allows to directly connect the
system behavior and results expected by the control experts at
ELV with the modeling and robust analysis capabilities of LFT
and the structured singular value u.
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The article layout is based on the three first steps of the process
followed to accomplished the transfer:

(1) Provide a high-level theoretical description.
(2) Define a simple, but representative study case.
(3) Follow incremental, step-by-step application.
(4) Release a compact code script of the above.
(5) Collaborate: visit and support.

2. HIGH-LEVEL THEORETICAL PRESENTATION

The importance of a theoretical presentation for industrial
transfer is to conceptualize the key ideas underpinning the
methods and tools as opposed to provide a detailed and mathe-
matical exact academic exposition.

2.1 Linear Fractional Transformations (LFT)

A LFT is a representation of a system using a feedback inter-
connection and two matrix operators, M = [M| Mi2; My M)
and A. The matrix M represents the nominal (known) part of
the system while A contains the parameters p; measuring the
unknown. The parameters p; can be real or complex, as well as
static, time-varying or nonlinear. There are two possible types
of LFTs, lower and upper (see also Fig. 1):
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Fig. 1. Lower and upper LFTs

Of course, the LFTs are only well-defined if the inverses ex-
ist. The matrix A is unrestricted in form (structured or un-
structured) but it is important to note that unstructured uncer-
tainty at component level becomes structured at system level.
The selection of the variable set p; € A that captures the be-
havior of the nonlinear system is a task that is not always
obvious a priori. Indeed, this step is key to obtain a LFT that
will yield relevant and meaningful results and, despite its ap-
parent simplicity, is where most of the LFT modeling effort and
ingenuity is focused. The goal is to achieve the correct trade-
off between LFT complexity (number of p parameters and total
dimension of A) versus fidelity with respect to the nonlinear
system behaviour.

There are several approaches and toolboxes that facilitate ob-
taining a proper LFT model (see Lambrechts, P. et al. (1993);
Hansson, J. (2003); Magni, J.F. (2004); Marcos, A. and Balas,
G.J. (2004); Marcos, A. et al. (2007); Balas, G.J. et al. (2014)
and references therein).

2.2 Structured Singular Value, 1
The structured singular value pa(M) of a matrix M € C™*"

with respect to the uncertain matrix A is defined in (1), where
ua(M) = 0 if there is no A satisfying the determinant condition.

1
Ha(M) = mina (o (A) : det(I — AM) = 0)

3
Note that this definition is given in terms of an {M,A} model
which is an LFT model where A is typically norm-bounded
|All < 1 (without loss of generality by scaling of M) for ease
of calculation and interpretation. In this manner, if ua(M) <1
then the result guarantees that the analyzed system, represented
by the LFT (for example an uncertain closed-loop system),
is robust to the considered uncertainty level. The structured
singular value is a robust stability (RS) analysis but can be used
also for robust performance (RP), see [4].

Since ua(M) is difficult to calculate exactly, the algorithms
implement upper and lower bound calculations Balas, G.J. et al.
(1998). The upper bound i p provides the maximum size per-
turbation ||[Aygl|l = 1/Uyp for which RS/RP is guaranteed,
while the lower bound p;p guarantees the minimum size per-
turbation ||Azg|l«~ = 1/ for which RS/RP is guaranteed to
be violated. Thus, if the bounds are close in magnitude then
the conservativeness in the calculation of u is small, otherwise
nothing can be said on the guaranteed robustness of the system
for perturbations within [1/uyg, 1/urs].

Note that in the above interpretation, the one used most often,
Ua(M) becomes a binomial-type of robust analysis (i.e. either
the system is robust or not (Ua(M) < 1 or > 1)), with an
assessment on the conservativeness of the answer given by
the range of the bounds, and returning the associated worst-
case A at these peak values. As it will be shown later this is
a simplified view on the analytical power of us(M) since in
reality it is a worst-case frequency-domain analysis allowing to
extract robust/worst-case information across frequencies.

3. STUDY CASE FOR LAUNCHER TVC

A launcher thrust vector control (TVC) example is proposed
to serve as a simple, yet relevant, study case. The advantage
of this case is that it contains some of the main characteristics
for atmospheric launchers and facilitates understanding of the
results. The (2 rigid states + 1 bending mode of 2"¢ order) state-
space system for this study case is given by:
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where TMCpyp and RMCjys are the bending mode’s transla-
tional (at pivot point, PVP) and rotational (at the inertial navi-
gation system, INS) lengths. The general characteristics are:

(1) Simplified yaw planar rigid motion. The real-uncertain
rigid model is a two states / outputs [y, Y] containing
only the aerodynamic Ag and controllability K terms and
with a single input T'n thrust deflection. (Ag, K} ) are math-
ematical variables formed by physical parameters such as
center of gravity xcg, moment of inertia Jy,, dynamic pres-
sure g, launcher’s reference area S,.r, yawing coefficient
CNy, center of pressure xcp and pivot reference xpy pre:
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