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Abstract: Waterflooding is a common oil recovery method where water is injected into the reservoir for
increased productivity. Optimal operational strategy of waterflooding processes has to consider proceeds
realized from produced oil and cost of productions including both injected and produced water. This is a
dynamic optimization problem. The problem could be solved through numerical algorithms based on
traditional optimal control theory which can provide only open-loop control solutions and rely on an
accurate process model. However, reservoir properties are extremely uncertain, and hence open-loop
solutions based on a nominal model are not suitable for applications with real reservoirs. Introduction of
feedback into the optimization structure to counteract the effect of uncertainties has been proposed
recently. In this work, a novel feedback optimization method for optimal waterflooding operation is
presented. In the approach, appropriate controlled variables as combinations of measurement histories
and manipulated variables are first derived through regression based on simulation data obtained from a
nominal model. Then a feedback control law was represented as a linear function of measurement
histories from the controlled variables obtained. Through a case study, it was shown that the feedback
control solution proposed in this work was able to achieve a near-optimal operational profit with only
0.45% worse than that achieved through the true optimal control (with system’s properties assumed to be

known a priori), but 95.05% better than that obtained with the open-loop solution under uncertainties.
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1. INTRODUCTION

The prudent search for efficient recovery methods of oil from
ageing reservoirs has sprung studies on optimization
techniques for reservoir waterflooding. Waterflooding is the
most common type of secondary recovery methods (Adeniyi
et al., 2008) which involves injection of water into the
reservoir through an injection well with the aim to properly
sweep the oil in place towards a production well and/or
maintain the reservoir pressure (Grema and Cao, 2013).

A typical waterflooding optimization problem seeks to
determine optimum injection and production settings in order
to maximize a performance index such as net present value
(NPV) or total oil recovery. Several works were reported to
employ the traditional optimal control which provides an
open-loop solution based on an off-line nominal model
(Asadollahi and Naevdal, 2009; Brouwer and Jansen, 2004).
Unfortunately, reservoir properties including its geometry
and boundaries are uncertain (Jansen et al., 2008). There are
some production behaviours that can rarely be captured well
through simulation model such as well coning (Dilib and
Jackson, 2013a). Therefore, for a real oil reservoir, open-loop
optimal solution determined off-line from a model may be
suboptimal or entirely non-optimal.

Several methods have been proposed in the literature to deal
with such uncertainties. For example, in robust optimization
(RO), inputs are implemented in an open-loop fashion which

have to follow a predetermined profile such that system
constraints are satisfied in the presence of any uncertainty or
disturbance (Yeten et al., 2003; Ye et al., 2013; Gabrel et al.,
2014). Because RO approaches are designed to account for
all possible uncertainties, their performance is mostly
conservative which hardly leads to an optimal solution.
Works that reported to use such technique in the field of
waterflooding include that of van Essen and others (van
Essen et al., 2009). It involves use of a set of reservoir
realizations with the assumption that it captures all reservoir
characteristics and production behaviours, a condition which
is very difficult to be met in reality. Another method
developed to counteract the effects of uncertainties is
parametric optimization technique (Fotiou et al., 2006).
Never the less, the method is too complicated to be applicable
to waterflooding processes. Stochastic optimization methods
were also developed to counter the effects of systems
uncertainties (Tu and Lu, 2003; Pastorino, 2007; Wu, 2012).
These methods involve random search within a parameter
space in which potential solutions are evaluated. (Collet and
Rennard, 2007). Slow convergence and high computational
power requirement is a major drawback to these methods. A
practical approach, repeated learning control was developed
for batch processes (Ganping and Jun, 2011; Ahn et al,
2014), unfortunately it is not applicable to processes that are
not repeatable, typical of petroleum production from
reservoirs.
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The current practice in industries is a procedure that is
commonly referred to as history matching which involves
periodic updating of available reservoir models using
historical data and subsequent determination of operational
strategies based on the updated models. However, solutions
based on history-matched models may be suboptimal or non-
optimal at all because of inability of updated models to
predict reality correctly.

Based on the fact that feedback is an efficient tool to deal
with uncertainties, proposals have been made recently of
including a direct feedback control for optimal waterflooding
operations (Jansen et al., 2008; Dilib and Jackson, 2013a;
Brouwer et al., 2001; Foss, B. and Jensen,J. P., 2011). But a
fundamental task that has not been investigated is
formulation of a simple controlled variable (CV) that should
make the optimality of waterflooding process insensitive to
various geological uncertainties. Recently, we have
developed a robust CV based on the principle of self-
optimizing control (SOC) and tested it on a system with one
degree of freedom (DOF) (Grema and Cao, 2014). In that
work, an optimal feedback control law was represented as a
linear function of production measurements with coefficients
to be determined through least square regression to
approximate the gradient of the cost function against
manipulated variables based on simulated data obtained from
a nominal model. The whole idea is to maintain the selected
CV at zero through feedback control so that the operation is
automatically optimal or near optimal with an acceptable
loss.

This work extended the methodology presented by (Grema
and Cao, 2014) to solve multivariable waterflooding
optimization problem. Results obtained were compared with
the open-loop optimal control approach for cases with
different uncertainties. Furthermore, true optimal control
solutions where the system model was assumed to be perfect
with all properties known a priori are also derived as a
benchmark for the above comparison.

2. APPROACH

2.1 Dynamic Optimization for Reservoir Waterflooding using
SoC

A reservoir model in a discretized form is given as
g, x**1,xK) = 0 (D

where xX and u® are the state and input vectors respectively
at time-step, k. For such kind of system, an objective
function, J to be optimized can be represented as

J = Zk=1J" Wb, y9) 2)

where J consists of contributions at each time step denoted by
J¥, y* is a vector of measurements at time step k, and N is
the total number of time steps. From (1), it can be inferred
that any change in u® at time k will affect the states x**1,

which will in turn influence the outputs, y*** through some
measurement functions

h(x*,y*) =0 3

A feedback control law is sought to maintain the gradient of
the objective function with respect to control input to be zero
or near zero at each time step such that the overall trajectory
is optimal or near optimal, i.e. the objective function is
minimum or near minimum in the presence of uncertainties.
If any two or more control trajectories are perturbed, then the
deviation of the cost function J, can be approximated by
finite differences between two closely related trajectories,
ul, u?, ., ul and uly,, ud g, . uly, if max|jul,, —uf|| <
¢ with a sufficiently small €. The deviation in the cost
function can be written using Taylor’s series expansion as

Jiri—Ji = 2?21
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where n,, is the total number of inputs and Gi’fj is the gradient

of the objective function with respect to the input channel, j
at time-step, k for the reference trajectory, i.

Generally, the analytical expression of the gradient function
in (4) is difficult to obtain particularly in the presence of
uncertainties. To derive an output feedback control law,
uf = F(y,,y*', .y¥™), which is equivalent to
kok=1 k- k_q it ;

F(yl.,yl. Y, ") —u® =0, it is proposed to approximate
these gradients by a number of measurement functions with a
set of unknown parameters to be determined through
regression based on simulated data. Therefore, the gradient in
(4) can be replaced by a measurement function, C as

Jivr = Ji = T3ty BNenea[C(0,, ¥E ¥E o yE T ufy)
(uffer,j — ui)]

where 6; is a parameter vector to be determined through
regression for channel j and the measurement vector
includes current and past measurements with n being the
number of histories, which was found to be 2 after some trial
and error exercises in this study. € can be any polynomial
function such that u* can be easily obtainable, but a linear
combination of measurements was adopted in this work.

®)

For simulated data collection, the following steps are
followed:

1. A control trajectory, i is found via optimal control
computation given as

N
e ud,

2. The control trajectory above is used to solve the
model equation in (1) where measurements and
states sequences are obtained which are given

respectively as:

0 1 22 N 0 o1 .2 N
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3. The control trajectory in step 1 is perturbed to
ul, g, u? ... v, and the model is solved where
perturbed measurements Y2, 1, Y11, Y21 o e Yot
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