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Abstract: In this article we expose typical examples of systems from the oil industry having
variable delays. The root causes of the variability can be the transport phenomena, the clocks
mis-synchronisation in the employed information technology, or the transmission of waves in
surrounding medium. We discuss these problems and sketch solutions.
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1. INTRODUCTION

As many industries, the oil sector has to cope with dynam-
ical systems with delays. One main reason why delays are
ubiquitous in this field is that transport of fluid material
is a dominant problem in almost all applications related
to oil. Another factor is the long distances over which fluid
transport (horizontal or vertical) has to be considered.
In this article, we present several representative practical
examples. With simplifying assumptions, we expose some
problems where mitigation of the effects of delays are the
central question.

Control engineers know that delays have negative impacts
on closed-loop control. However, the malicious effects of
the variability of the delay are often underestimated. The
examples chosen in this article all feature varying delays.
We explain why, and we stress why this is a problem. After
some recall on recent methodological tools developed to
control delay systems, the paper covers three distinct types
of variation.

First, we explain the control-induced delay variations. In
the blending problem we consider, the delay is defined by
an implicit integral equation where the controls, which are
flow-rates, have an effect. In this case of deterministic vari-
ations, we stress the surprising non-symmetric behavior
observed during step-ups and step-downs responses. The
predictability of the delay allows one to compensate for
it with good accuracy, using a motion planning technique
for open-loop and a generalized predictor for closed-loop.
Interestingly, this poses challenging stability analysis prob-
lems, and we sketch solution for them.

Second, we explain the problems associated with delays
caused by mis-synchronization of data produced by geo-
graphically distributed instrumentations. Here, the delay
is uncertain and can not be compensated for. We stress
its harmful effects on a simple, but state-of-the-art, mon-
itoring algorithm employed to check the mass balance of
an oil and gas production network. As will appear, delay
induced by dating uncertainty can be more detrimental
than measurement noises.

Third, we consider the problem associated with non-
causality of communication over networks. Inside a vertical
well, we expose how the system of communication with
repeaters can cause misinterpretation of measurements
when received at the surface. This problem lies at the
frontiers of our investigations. We briefly discuss how to
address it.

2. NEW CONTROL METHOD FOR DELAY
SYSTEMS

The techniques of delay compensation are not new. The
most widely used methods are predictor approaches (see
e.g. in Artstein (1982); Kwon and Pearson (1980); Mani-
tius and Olbrot (1979); Smith (1958)). As established in
numerous surveys and research works (Niculescu (2001);
Richard (2003)), the lack of robustness of this technique
with respect to the uncertainty on the delay is still a
major concern in automatic control theory. This lack of
robustness often appears as a performance bottleneck in
applications (see e.g. Mondie and Michiels (2003)).

Lately (see Krstic (2008, 2009b); Krstic and Bresch-Pietri
(2009); Krstic and Smyshlyaev (2008)), a new class of
predictor-based techniques has been proposed to address
this uncertainty. In particular, this methodology is based
on the seminal idea (see e.g. Krstic (2008)) of modeling
the actuator delay as a (fictitious) transport partial dif-
ferential equation (PDE). Essentially, this is an analysis
tool, useful to establish convergence. In details, one uses a
backstepping boundary control method on the transport
PDE introduced to model the delay. This transformation
allows to use systematic Lyapunov design tools for robust
stabilization and adaptation. A list of references on this
topic includes Bekiaris-Liberis (2014); Bekiaris-Liberis and
Kirstic (2013a,c); Krstic (2009a); Bresch-Pietri et al. (2014,
2012a,b,c). We now sketch a (brief and partial) state-of-
the-art in relation to the examples presented in this article.

2.1 Ezact compensation of a single delay

Consider the following system
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X(t)=AX(t)+ BU(t— D)

where D is a constant delay. Due to the delay, the system
is infinite-dimensional. When the delay is compensated,
the system becomes finite dimensional, because it becomes
delay-less. For a constant delay, exact compensation can
be achieved by using a finite time prediction over the exact
value of the delay Artstein (1982); Kwon and Pearson
(1980); Manitius and Olbrot (1979), i.e.

U(t) = KX (t+ D)
=K [eADX(t) +/tt

-D

where the feedback gain K stabilizes the delay-free dynam-
ics. This is, as is well-known, a non robust control strategy.
In particular, uncertainties in the system dynamics and
delay reveal troublesome. Fortunately, some degree of ro-
bustness can be added by employing adaptive control tech-
niques developed on the basis of this prediction technique.
For example, one can refer to Bresch-Pietri et al. (2012a)
where several classic cases of equilibrium regulation are
treated: parametric uncertainties, disturbance rejection,
partial state measurement, or delay adaptation.

A=) BU(s)ds (1)

2.2 Robust compensation of a single varying delay.

Following Krstic (2009a), consider the more general system
X(t) = AX(t) + BU(t — D(t))

In the case of a varying delay, the prediction has to be done
over a varying horizon. This gives (see Nihtila (1991))

U(t)=KX(n~'(t)) where n(t)=t—D() (2)
Importantly, for this controller to be well-defined, the 7
function has to be invertible (as one has to use its inverse
n~1). This means that every information sent has to be

received once and only one by the system. A sufficient
condition for this is

D(t) <1, WVt (3)
which we will refer from now-on as “causality condition”.

In general, the prediction formula (2) does not provide
exact delay compensation, since future variations of the
delay are not known in advance. We have

X(t) = AX(t) + BX(t —D(t) + D(t — D(t)))

#0

At least, one shall investigate the possible impact of this
mismatch on asymptotic stability. This can be done by
studying a partial differential equation reformulation using
a special backstepping transform. This rewriting allows
a Lyapunov-Krasovskii analysis. A result is that if the
control gain K in (2) can be chosen sufficiently small, then
the closed-loop system is asymptotically stable (Bresch-
Pietri et al., 2014, Theorem 1) *.

2.8 Non causal delay

The generalized predictors (2) and their extensions have
the capability of treating variable delays and uncer-
tain delays (Bekiaris-Liberis and Krstic (2013a,b); Krstic

I This result has (indirect) connections with the usual robustness
margin determined from the Nyquist criterion for LTI systems

(2009a)). However, all these works share the common
assumption (3).

If this assumption fails, then the principle of causality
is violated. The delay increases faster than the time
grows. Under such circumstances, information transmitted
through a channel delayed in this way does not constitute
a continuous flow of data, but produces an intermittent
flow. Also, the rule of first-in first-out (FIFO) does not
hold anymore.

Assumption (3) has been instrumental in all the works con-
ducted so far. It has appeared both explicitly or implicitly,
as a consequence on bounds formulated in the statements
of convergence results.

Interestingly, temporary violation of this assumption is not
necessarily causing major trouble in the stability analysis.
It is more a condition that shall be satisfied “on average”,
as has been formulated in Bresch-Pietri and Petit (2014),
under the relaxed form

1 b
/ D(T)2d7 < 5, Vit € [hl, hi+1] (4)
hi

t—h;
for some ordered sequence (hiLof discontinuity points
limh; = 400, A < h;y1 — hy < A. Of course, (3) implies

(4)-

3. CONTROL-INDUCED DELAY VARIATIONS:
TRANSPORT PHENOMENA

We now present a first example where the delay depends on
past values of the control. Consider a transport phenomena
where the control variable is, directly, or indirectly, the
flow-rate 2. Consider that the flow is incompressible, single
dimensional, so that the flow-rate is (spatially) uniform
but time-varying. At any instant, the flow-rate can be
freely changed (within some physical upper and lower
limits). However, propagation of material takes time. If the
nature (e.g. concentration) of the fluid matters, then a de-
lay appears, as a simple effect of finite-speed propagation
of medium. This is the case in flow networks employed for
blending semi-finished products in refineries. This example
is pictured in Figure 1.

The flow discussed above satisfies a simple conservation
principle (leaving out the effects of viscosity), which is
equivalently written under the form of a simple partial
differential equation defined over a spatial domain = €
0.1]
Ok (x,t) = u(t)0:&(x, t)

where ¢ is the propagated state and u in the input (flow-
rate). The (smooth?) solutions of this PDE are such that

f(lat) :f(O,th(t)) (5)
where D(t) is defined by
/ w(r)dr = 1 (6)
t—D(t)

Using (5), one defines a delayed input-output relation.
This delay is defined by the implicit integral equation (6).

2 It may be necessary to clarify that the flow-rate can be itself a
distributed variable, as is the case of compressible flow Di Meglio
et al. (2012a,b); Sinegre et al. (2005)

3 Implicitly, we ignore shocks.
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