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a b s t r a c t

Reliable recognition of fault type and assessment of fault severity is essential for decision making in
condition-based maintenance of gear transmission systems. In engineering practice, the gear systems
are often subject to hybrid faults on the same component or different components. The concurrence of
multiple faults makes the fault detection, in particular, the examination of both the fault types and sever-
ities, more challenging. Recently, this research area has been recognized as an important direction. A logic
solution is to decouple the hybrid faults. This paper reviews various aspects of recent research in decou-
pling diagnosis of hybrid faults in gear transmission systems, and discusses the techniques used for gear-
box hybrid faults decoupling. The general fault detection technologies for gearboxes are also briefly
summarized. A potential methodology based on the bounded component analysis (BCA) for hybrid faults
decoupling is discussed. Possible future research trends of gearbox hybrid faults decoupling diagnosis are
suggested.
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1. Introduction

Gear transmission systems are widely used in a variety of appli-
cations in many industries, including aerospace, mining, railway,

automobile, manufacturing, agriculture and wind energy. A gear-
box breakdown may result in catastrophic failures and significant
economic losses [1]. For example, a bearing failure led to the dam-
age of a thermal generator set in Japan in 1992 [2], a broken gear
tooth resulted in the destruction of a helicopter in UK in 1986
[3], and a gearbox fault caused the damage of a propulsion system
in the ‘Zhouying 4’ ship in China in 2006 [3]. According to the
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statistics [3,4], the gearbox faults account for 80% of all the failures
in the transmission machinery, and in the gearbox, the gear faults
account for 60%. Moreover, according to Swedish Club Highlights
[5], the most frequent failure part of a ship is the marine propul-
sion system (including the diesel engines), in which the gearboxes
are identified as one of the most vulnerable components. In the
coal mining industry, according to the latest report [6], the gear
transmission components of coal cutters have the highest failure
rate among other components in the machine. Fig. 1(a) shows
the settlement of claims in marine propulsions [5], and Fig. 1(b)
shows the fault types of the shearer cutting parts in the coal cutters
[6]. The percentage of settlement of claims for the gearbox and
operating gear is more than 12% in the marine propulsions (see
Fig. 1(a)), and the gear and bearing failures in both the spur and
planetary gearboxes account for 72% of all the faults in the shearer
cutting parts (see Fig. 1(b)). In addition, in rotorcraft drive systems,
the breakdown of the rotorcraft gearboxes is also a critical issue
and much research has been devoted to analyzing the reliability
of these gearboxes over the past 25 years [7–9]. Hence, in order
to ensure safe operation of machinery, improve maintenance effi-
ciency, save time and reduce costs, industries require the mainte-
nance strategies be transformed from the traditional breakdown
maintenance (failure and repair model) to condition-based mainte-
nance (CBM), and toward predictive maintenance (PM) [10]. Con-
dition monitoring and fault diagnosis (CMFD) technology
provides the solid foundation for the implementation of CBM and
PM [11].

2. Brief review of vibration based CMDF techniques

The fault detection is a longstanding research topic, dating back
to the early stage of last century [20,21]. Over past decades, it has
been widely recognized that vibration analysis can be used effec-
tively for mechanical fault diagnosis. In the early 1940s, pioneering
investigation on mechanical damage detection using vibration
analysis was conducted by Collacott [12]. A milestone was reached
in 1970s when the frequency analysis technologies were firstly
introduced into condition monitoring of mechanical systems [13–
15]. Representative work includes discrete frequency [13], cep-
strum analysis [14] and signature analysis [15]. Then in the
1980–90s, some classical methodologies, including order tracking
[16], time domain averaging [17], time–frequency analysis [18]
(such as wavelet transform [19] and Wigner–Ville analysis [20]),
and fault tree analysis [21], were developed and applied to
machinery defects detection. To date, many useful techniques have
been developed for gearboxes CMFD (including gears and bearings)
[22–31]. Existing vibration signal analysis methodologies applied
to gearbox CMFD can mainly be classified into three categories:
(1) the statistical analysis, (2) the filter models, and (3) the time
and/or frequency domain analysis approaches. Table 1 lists the
state-of-the-art presentations of the statistical analysis approach
and Table 2 provides the state-of-the-art presentations of the filter
models and time/frequency approaches in the gearbox CMFD.
Some researchers utilized intelligent pattern recognition tech-
niques (namely, artificial neural network (ANN) [32], fuzzy infer-
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Fig. 1. (a) Settlement of claims in marine propulsions; (b) typical faults in shearer cutting parts in coal cutters.

Table 1
Representative work using the statistical analysis approach.

Category Representative approach

Hypothesis testing Kolmogorov–Smirnov test [38], Satterthwaite’s t0-test [39], Wilcoxon rank-sum test [40]

Statistical index Kurtosis [41], Euclidean distance [42], Mahalanobis distance [43], Kullback–Leibler distance [44], Bayesian distance [23]
Statistical learning Principal component analysis (PCA) [45], Fisher discriminant analysis (FDA) [45], partial least squares (PLS) [46], multidimensional scaling

(MDS) [47], Isomap [48], Laplacian eigenmaps (LE) [49], locally linear embedding (LLE) [50], local tangent space alignment (LTSA) [51], locality
preserving projections (LPP) [52], neighborhood preserving embedding (NPE) [53], maximum variance unfolding (MVU) [54], common vector
approach (CVA) [55], diffusion maps (DM) [56]

Statistical modeling Time series model [57], Dempster–Shafer evidence theory [58], hidden Markov model (HMM) [59], proportional hazards model (PHM) [60],
proportional covariate model (PCM) [61]
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