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a b s t r a c t

The paper presents an application of the continuous wavelet transform (CWT) to analyse the energy den-
sity of signals which maximize the integral-square error (ISE) at the output of two different accelerom-
eters. These accelerometers were chosen as being examples of a large class of measuring instrument
intended for the measurement of nondetermined input signals. Input signals constrained in magnitude
only and simultaneously in magnitude and rate of change are considered in this paper.
Scalogram analysis which provides a graphical representation of the signal energy density over the

time-scale plane is discussed in detail in the second section of this paper. In the third, the results for
the two accelerometers modelling are presented, while the fourth section presents methods for deter-
mining signals maximizing the ISE by using the genetic algorithm (GA).
The final sections is devoted to a discussion of the results and analysis of the energy density based on

the scalogram and corresponding conclusions with respect to properly determined signals maximizing
ISE.
For modelling the sensors MathCad15 was applied, while the maximizing signals and CWT analysis

were executed using MATLAB2011.
The methods presented in this paper constitute a novel approach for the estimation of the correctness

of the signals maximizing the ISE by means of energy density analysis.
� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Sensors play a very important role in the theory and practice of
measurement in various fields such as biology, medicine, physics,
mechanics and many others. Depending on their field of use, speci-
fic requirements are imposed upon sensors with regard to accu-
racy. In the case of measuring instruments intended for static
measurement the class index resulting from the value of maximum
static error indicates their accuracy. For a long time this index has
been determined by the process of calibration, controlled by legal
regulations which define the hierarchy of standards and calibration
procedures.

In the case of sensors intended for measurement of dynamic
signals, calibration process similar to those available for static
measuring instruments have not yet been elaborated till now.
The methods used here were usually based on the testing of sensor
responses on Dirac impulse, unit step, or a typical input testing sig-
nal e.g. ramp function or a square wave in time domain, or in the
frequency domain on frequency characteristics of the sensor under

test with a rather free interpretation of the obtained results [1–4].
The problem of signals selection based on the determination of
dynamic errors appears only in 2008 in the document of the JCGM
100:2008 (Committee for Guides in Metrology), where in p.04 we
find the following recommendation: ‘‘. . . result of a measurement
should be universal: the method should be acceptable to all kinds of
measurements and to all types of input data used in measurements”
[5]. As it is impossible to analyse the full range of all possible
dynamic signals, we will determine the one signal that we will
then consider as being representative of all the signals that we
are interested in. The signal we chose will be the one generating
an error of maximum value. This signal can be taken as including
or representing all other signals and a signal of any shape, occur-
ring at the input of the sensor, will always generate an error of less
than or at most equal to this maximum value [6–8].

A signal maximizing the dynamic error should be matched to
the dynamic characteristics of the sensor under test, as it can trans-
mit signals only with a finite rate of change [6–9]. It follows from
the fact that the dynamics of all kind of low-pass sensors are lim-
ited and results from frequency characteristics as well as form
their band pass range. Therefore manufacturers always place such
characteristics in the quality certificate of sensors intended for
dynamic signals.

http://dx.doi.org/10.1016/j.measurement.2016.04.053
0263-2241/� 2016 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail addresses: k.tomczyk@cyfronet.pl (K. Tomczyk), elay@pk.edu.pl

(E. Layer).

Measurement 90 (2016) 224–232

Contents lists available at ScienceDirect

Measurement

journal homepage: www.elsevier .com/locate /measurement

http://crossmark.crossref.org/dialog/?doi=10.1016/j.measurement.2016.04.053&domain=pdf
http://dx.doi.org/10.1016/j.measurement.2016.04.053
mailto:k.tomczyk@cyfronet.pl
mailto:elay@pk.edu.pl
http://dx.doi.org/10.1016/j.measurement.2016.04.053
http://www.sciencedirect.com/science/journal/02632241
http://www.elsevier.com/locate/measurement


The maximum value of the signal rate of change is equal to the
maximum value of the sensor impulse response. This maximum
value results from the derivative of sensor step response. The
impulse response being the first derivative of the step response
defines the velocity of the signal transferred by the sensor. There-
fore the maximum value of this impulse response is equal to the
maximum admissible velocity of our sensor [6].

In measurement theory, there are many criteria than can be
used to define dynamic error. In the area of energetic the ISE is
one of the most important. However, there are considerable prob-
lems with the analytical determination of signals maximizing this
error. In the case of one constraint, referring only to the magnitude,
analytical solutions are considered in detail in [6–8], while exam-
ples of their practical application are presented in [10]. Due to the
necessity of solving the set of complicated integral-convolution
equations, it is only possible to determine signals with up to about
25 switchings. For a higher number of switchings the equations
presented in [6–8] can be too difficult to solve and in many cases
the solution is even unattainable. For two constraints analytical
solutions have not been yet found. In such a situation the problem
of determining signals maximizing the ISE can be transferred to the
heuristic approach. The good results give here the possibility of GA
application, with the classical roulette method and execution of
real coding of the parameters [11–14].

Until now, neither the value of the frequency component nor
energy density of maximizing signals has been considered for cases
of dynamic error criteria. Such analysis seems to be interesting in
terms of evaluating the correctness the maximizing signals deter-
mined by means of GA. Taking into account that these signals are
included in the class of the non-stationary signals, it seems reason-
able to apply one of the tools for time–frequency analysis.

The CWT study using a scalogram based on Morlet wavelets
[15–19] works well in such cases. It is worth noting that an appli-
cation of the scalogram allows the detection of time-varying
energy flux and transient bursts which usually are not easily
detectable in the time or frequency domain [17].

As an example of the application of the CWT in the analysis of
both the energy and the harmonic components of the signals max-
imizing ISE for the Althen731A and the Althen731-207 voltage out-
put accelerometers is presented in this paper [20,21].

2. Theoretical principles of applied CTW analysis

The energy density of non-stationary signals uðtÞ, as a function
of frequency most commonly represented by their wavelet scalo-
grams. The scalogram presents square magnitude of the continu-
ous wavelet transform CWT [15–17] and for t 2 ð0; TÞ is defined as

ScalðwÞu ðs; sÞ ¼ CWT ðwÞ
u ðs; sÞ
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where w�
s;sðtÞ is the complex conjugate of the wavelet used for signal

analysis.
The total time T refers to the signal time duration and corre-

sponds to the steady state of the accelerometer impulse response.
In (1) the kernel

ws;sðtÞ ¼
1ffiffi
s

p w
t � s
s
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ð2Þ

shifts and dilations in scale of the mother wavelet wðtÞ, 1=
ffiffi
s

p
denotes the normalisation factor, s and s are the scaling and the
translation factors. The normalisation factor ensures the same
energy for all wavelets.

The scaling s is a dimensionless parameter, while s has a unit of
time measurement [s].

The value of the signal energy is obtained indirectly, by double
integration of the scalogram (1)

Eu ¼
Z T

0
uðtÞ2dt ¼ 1

Cw

Z T

0

Z þ1

s¼0

ScalðwÞu ðs; sÞ
s2

dtds ð3Þ

where
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is the admissible constant, and

WðxÞ ¼
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0
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Eq. (3) represents the total energy density of the signal in the time-
scale plane and is associated with the measurement of Ds Dt

s2 , where
Ds and Dt are the scale and the time intervals.

In this paper the scalogram is based on the Morlet wavelet
which can be presented in real or complex form.

The real form is

wMðtÞ ¼ e�t2=2 cosð5tÞ ð6Þ
and in most cases is used to sharpen signal transitions [16], while
the complex form [18] is

wMðtÞ ¼ 1ffiffiffiffi
p4

p expðix0tÞ � expð�x2
0=2Þ

� �
expð�t2=2Þ ð7Þ

where x0 is the central frequency of the mother wavelet. It repre-
sents the centre of a Gaussian distribution of the particular frequen-
cies in a Morlet wavelet.

The component expð�x2
0=2Þ in (7) is used to remove the non-

zero mean value of the complex sinusoid and it can be neglected
for x0 > 5 ½Hz�. Then, we have

wMðtÞ ¼ 1ffiffiffiffi
p4

p expðix0tÞ expð�t2=2Þ ð8Þ

The particular wavelets corresponding to (8) are calculated
based on (2) and are
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Determining the Fourier transform of (9) we have
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and the maximum of (10) gives the condition

@jWM
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After recalculation (11) the relation between the Morlet wavelet
frequency xM and the scale s is obtained as

s ¼ x0

xM
¼ f 0

f M
ð12Þ

The maximum value of the scalogram gives a solution for the
equation

@
jCWT ðwÞ

u ðs; sÞj2
@s

¼ 0 ð13Þ

In MatLab, the scalogram is generated using the following function:
wscalogram(‘image’,s,‘scales’ scales,‘ydata’,x, ‘xdata’,t), and s = cwt(x,
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