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a b s t r a c t

In this paper, a consensus filter based distributed variational Bayesian (CFBDVB) algorithm is developed
for distributed density estimation. Sensor measurements are assumed to be statistically modeled by a
finite mixture model for which the CFBDVB algorithm is used to estimate the parameters, including
means, covariances and weights of components. This algorithm is based on three steps: (1) calculating
local sufficient statistics at every node, (2) estimating a global sufficient statistics vector using a consen-
sus filter, (3) updating parameters of the finite mixture model based on the global sufficient statistics vec-
tor. Scalability and robustness are two advantages of the proposed algorithm. Convergence of the CFBDVB
algorithm is also proved using Robbins–Monro stochastic approximation method. Finally, to verify per-
formance of CFBDVB algorithm, we perform several simulations of sensor networks. Simulation results
are very promising.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Advances in network technology, like peer-to-peer networks on
the internet or sensor networks, have highlighted the need for effi-
cient ways to deal with large amounts of data that are distributed
over a set of nodes. Examples are financial data reported on the
internet, weather data observed by a set of sensors, etc. In partic-
ular, in many data mining applications we are interested in learn-
ing a global model from such data, like a probability distribution or
a clustering of the data, without transferring all the data to a cen-
tral unit [1].

The usefulness of graphical models in distributed learning and
data mining is evaluated in [2,3] using multivariate Gaussian prob-
ability density functions. A distributed EM (Expectation Maximiza-
tion) algorithm is proposed in [4] for distributed density
estimation. The observations are assumed to be statistically mod-
eled by a Gaussian mixture model. Distributed density estimation
is also considered in [5,6] in which a distributed incremental EM
(DIEM) method is proposed for distributed networks with a ring
topology. Due to the ring topology employed in these references,
failing a node will cause a critical problem. Other fault tolerant
variants of the distributed EM algorithm have also been proposed
using other network topologies [7–11]. Singularity in the

estimated parameters is an important problem of the EM algo-
rithm. Singularity may happen particularly if the assumed model
order is not proper. Variational Bayesian approximation has been
used recently to learn finite mixture model parameters. The basis
of the variational Bayesian approach is to optimize a lower bound
on the likelihood function by an iterative method [12–20]. Distrib-
uted consensus algorithms have recently emerged as a class of
low-complexity, iterative distributed algorithms where neighbor-
ing nodes communicate with each other to reach an agreement
[21]. In particular, the average consensus algorithm computes the
average of an initial set of state values in a scalable and fault toler-
ant manner [22].

Consensus was early studied in [23] and has received increased
attention in different fields due to its wide range of applications
such as load balancing in parallel computing [24], coordination of
autonomous agents [25–28], distributed control [29,30,22] and
data fusion [31–35].

In this paper, it is assumed that each node in the network senses
an environment that can be described as a mixture of some ele-
mentary surroundings. The measurements are thus statistically
modeled by a finite mixture model, where each component corre-
sponds to one of the elementary conditions. The paper proposes a
consensus filter based distributed variational Bayesian (CFBDVB)
algorithm for estimating the mixture components, which are com-
mon to the environment and sensor network as a whole, as well as
the mixing probabilities that may vary from node to node. The
algorithm produces an estimate of the density of the sensor data
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without requiring the data to be transmitted to and processed at a
central location. Alternatively, the algorithm can be viewed as a
distributed processing strategy for clustering the sensor data into
components corresponding to predominant environmental fea-
tures sensed by the network. The applicability of the CFBDVB algo-
rithm is not limited to distributed sensor networks, but it can be
considered as a distributed data mining algorithm that can be used
in any distributed data warehouse.

Our proposed CFBDVB algorithm calculates the local sufficient
statistics firstly. The global sufficient statistics vector is estimated
afterwards. Finally, the estimated global sufficient statistics are
used to update the mixture model parameters. The estimation of
global sufficient statistics is achieved by using an average consen-
sus filter. The consensus filter can diffuse the local sufficient statis-
tics over the entire network through communication with the
neighboring nodes [21]. Therefore, the global sufficient statistics
vector is estimated using the local information of each node and
also neighbors’ information. Each node, then updates the parame-
ters in the same way as in the standard variational Bayesian algo-
rithm. Scalability and robustness are two advantages of the
proposed method. Because the consensus filter only requires local
communication, the proposed CFBDVB algorithm is scalable. Fur-
thermore, since no critical problem occurs in the case of any node
failure, this algorithm is also scalable. Convergence properties of
the CFBDVB algorithm are also studied here and it is shown that
the CFBDVB converges to a maximum negative free energy point.

The rest of the paper is organized as follows. Section 2 discusses
the variational Bayesian approach for finite mixture probabilistic
models. Section 3 develops a consensus filter based distributed
variational Bayesian algorithm to compute the maximum likeli-
hood estimate. The proof of the stochastic approximation is pre-
sented in Section 4. Section 5 provides the results of simulations.
Concluding remarks are given in Section 6.

2. Variational Bayesian algorithm for Gaussian mixtures

The variational Bayesian (VB) algorithm is an iterative method
based mainly on the maximum likelihood principle. The idea
behind the VB algorithm is as follows [38,39]. Assume observation
Y ¼ ðy1; . . . ; yNÞ drawn from a population with density function
f ðy;wÞ. w is a vector of unknown parameters. In this paper, we
assume that f can be represented by a Gaussian mixture model
in which the components of the mixture are multivariate normal
distributions Nðy;l;TÞ where y is a multidimensional variable,
and l and T are the mean and inverse covariance parameters,
respectively. Therefore, assume that the distribution of the mea-
surements is represented by

f ðy;p;uÞ ¼
XJ

j¼1

pjNðy;lj; T jÞ ð1Þ

where J 2 ZP1 is the number of mixture components, j 2 ZP1 repre-
sents the component index, p ¼ fpjgJj¼1 are the mixture probabilities

and /j ¼ flj;Rjg is the set of parameters defining the jth compo-

nent. Define the set of parameters / ¼ f/jgJj¼1
, w ¼ fp;/g.

The observed data likelihood function is defined by

LðwÞ ¼ f ðYjwÞ ¼
YN
i¼1

XJ

j¼1

pjNðyi;lj;T jÞ
" #

ð2Þ

The VB algorithm is an iterative procedure to find the w that
maximizes f ðYjwÞ by data augmentation.

Consider a set of missing variables Z ¼ ðz1; . . . ; zNÞ correspond-
ing to Y ¼ ðy1; . . . ; yNÞ. Each zi ¼ ½z1i ; . . . ; zJi � is a binary vector

indicating by which component the data yi is produced. We would
say yi is produced by the jth component of the mixture if for all r–j,

zri ¼ 0 and z j
i ¼ 1.

X ¼ hY;Zi is regarded as the complete data with density func-
tion f cðX ;wÞ. The complete data log likelihood is
log LcðwÞ ¼ log f cðX ;wÞ.

Variational methods involve the introduction of a distribution
gð/Þ which provides an approximation to the true posterior distri-
bution. Using Jensen’s inequality [38], we can write

ln f ðYjpÞ ¼ ln
Z

f ðY;ujpÞdu ¼ ln
Z

gðuÞ f ðY;ujpÞ
gðuÞ du

P
Z

gðuÞ ln f ðY;ujpÞ
gðuÞ du ¼ LðgÞ ð3Þ

If the g distribution is chosen suitably in the above equation,
then the quantity LðgÞ will be tractable to compute, although the
original log-likelihood function is not. A variational approach seeks
to choose a suitable form for gðuÞ that not only is sufficiently sim-
ple but also is sufficiently flexible. Indeed, we choose some family
of g distributions and then try to find the best approximation by
maximizing LðgÞ. Therefore, the parameters p and / are assumed
to have conjugate priori pdf’s as

f pðpÞ ¼ Dirðp;a0
1; . . . ;a

0
J Þ

f ljTðljTÞ ¼
YJ
j¼1

N lj;m
0
j ; ðb0

j TjÞ�1
� �

f TðTÞ ¼
YJ
j¼1

WðTj; t0j ;R
0
j Þ

ð4Þ

where Dir and W represent Dirichlet and Wishart pdf’s, respectively,
l ¼ ðl1; . . . ;lJÞ and T ¼ ðT1; . . . ; TJÞ.

The quantities a0
j , m

0
j , b

0
j , t0j and R0

j are called hyperparameters.
The hyperparameters of the posterior distributions obtained using
the variational approximation method are then

f̂ pðpÞ ¼ Dirðp;a1; . . . ;aJÞ

f̂ ljTðljTÞ ¼
YJ
j¼1

N lj;mj; ðbjTjÞ�1
� �

f̂ TðTÞ ¼
YJ
j¼1

WðTj; tj;RjÞ

ð5Þ

with hyperparameters given by

aj ¼ að0Þ
j þ

XN
i¼1

qi;j

bj ¼ bð0Þ
j þ

XN
i¼1

qi;j

mj ¼
bð0Þ
j mð0Þ

j þ
XN
i¼1

qi;jyi

bj

Rj ¼ Rð0Þ
j þ

XN
i¼1

qi;jyiy
T
i þ bð0Þ

j mð0Þ
j mð0ÞT

j � bjmjmT
j

tj ¼ tð0Þj þ
XN
i¼1

qi;j

ð6Þ

In the above

qi;j ¼
ui;j

si
ð7Þ

with
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