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Goodness of fit for item response theory (IRT) models in a frequentist and Bayesian framework are eval-
uated. The assumptions that are targeted are differential item functioning (DIF), local independence (LI),
and the form of the item characteristics curve (ICC) in the one-, two-, and three parameter logistic mod-
els. It is shown that a Lagrange multiplier (LM) test, which is a frequentist based approach, can be defined
in such a way that the statistics are based on the residuals, that is, differences between observations and
their expectations under the model. In a Bayesian framework, identical residuals are used in posterior
predictive checks. In a Bayesian framework, it proves convenient to use normal ogive representation of
IRT models. For comparability of the two frameworks, the LM statistics are adapted from the usual logis-
tic representation to normal ogive representation. Power and Type I error rates are evaluated using a
number of simulation studies. Results show that Type I error rates are conservative in the Bayesian
framework and that there is more power for the fit indices in a frequentist framework. An empirical data
example is presented to show how the frameworks compare in practice.
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1. Introduction

Psychometric theory is the mathematical framework for mea-
surement in many fields of psychology and education. These mea-
surements may concern abilities, personality traits, attitudes,
opinions, and achievement. Item response theory (IRT) models play
a prominent role in psychometric theory. In these models, the
properties of a measurement instrument are completely described
in terms of the properties of the items, and the responses are mod-
eled as functions of item and person parameters. While many of
the technical challenges that arise when applying IRT models have
been resolved (e.g., model parameter estimation), the assessment
of model fit remains a major hurdle for effective IRT model
implementation [23].

Model checking, or assessing the fit of a model, is an important
part of any data modeling process. Before using the model to make
inferences regarding the data, it is crucial to establish that the
model fits the data well enough according to some criteria. In par-
ticular, the model should explain aspects of the data that influence
the inferences made using the IRT model. Otherwise, the
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conclusions obtained using the model might not be relevant. IRT
models are based on a number of explicit assumptions, so the
method for the evaluation of model fit focus on these assumptions.
The most important assumptions underlying these models are sub-
population invariance (DIF), the form of the ICC, local stochastic
independence, and item score pattern. Researchers have proposed
a significant number of fit statistics for assessing fit of IRT models.
These statistics developed to be sensitive to specific model viola-
tions [4,15,16,20,21,19,25,26,28-31,36,35,50,52,53]. An essential
feature of these statistics is that they are based on information that
is aggregated over persons; therefore they will refer to as aggregate
test statistics.

To date most of the research to IRT model fit procedures has
been done in a frequentist framework. Chi-square statistics are
natural tests of the discrepancy between the observed and
expected frequencies or proportions computed in a residual analy-
sis. Both Pearson and likelihood ratio statistics have been pro-
posed; these statistics have been standard tools for assessing
model fit since the earliest applications of IRT.

A number of problems arise in using chi-square statistics as
tests of model data fit in the IRT context. Principal among them
is whether the statistics have the chi-square distribution claimed
and if so, whether the degrees of freedom are correctly determined.
Glas and Suarez Falcén [19] note that the standard theory for chi-
square statistics does not hold in the IRT context because the


http://crossmark.crossref.org/dialog/?doi=10.1016/j.measurement.2016.05.020&domain=pdf
http://dx.doi.org/10.1016/j.measurement.2016.05.020
mailto:c.a.w.glas@utwente.nl
http://dx.doi.org/10.1016/j.measurement.2016.05.020
http://www.sciencedirect.com/science/journal/02632241
http://www.elsevier.com/locate/measurement

550 M.N. Khalid, CA.W. Glas/Measurement 90 (2016) 549-559

observations on which the statistics are based do not have a multi-
nomial or Poisson distribution. Simulation studies [56,32,37,38]
have shown that the fit statistics in common use do generally
appear to have an approximate chi-square distribution; however,
the number of degrees of freedom remains at issue. Orlando and
Thissen [37] argued that because the definition of the observed
proportions correct are based on model-dependent trait estimates,
the degrees of freedom may not be as claimed. Stone and Zhang
[51] agreed with the assessment of Orlando and Thissen [37] and
further noted that when the expected frequencies depend on
unknown item and ability parameters, and when these are
replaced by their estimates, the distribution of the chi-square
statistic is grossly affected. Glas and Suarez Falcén [19] have also
criticized these procedures along the same lines for failing to take
into account the stochastic nature of the item parameter estimates.
The model fit indices which are based on the likelihood ratio and
Wald statistics are also problematic (computational intensive)
because every alternative model for every model violation for
every person and each item would have to be estimated [16].

To address the above mentioned issues Glas [16] has proposed
procedures based on the Lagrange multiplier (LM) statistic by
Aitchison and Silvey [1]. The LM statistics estimate the IRT model
only once and produce a number of tables of residuals that are
informative with respect to specific model violations. An advan-
tage of the use of LM tests is the necessity to formulate specific
parametric alternatives to the assumptions targeted by test statis-
tics. Glas have sketched the approach of LM test in the marginal
maximum likelihood (MML) frame work (see, for instance, [5,34]
which is the standard procedure for parameter estimation in IRT.
However, MML frame work may be less efficient (in terms of com-
putation) for multilevel and multidimensional psychometric mod-
els [12,8] due to complex dependency structures of models and
require the evaluation of multiple integrals to solve the estimation
equations for parameters.

These computational problems are avoided in a fully Bayesian
framework and now-a-days this framework is widely used for
parameter estimation in complex psychometric IRT models. When
comparing the fully Bayesian framework with the MML framework
the following considerations play a role. First, a fully Bayesian
procedure supports definition of a full probability model for quan-
tifying uncertainty in statistical inferences (see, for instance,
[16, p. 3]). This does involve the definition of priors, which creates
some degree of bias, but this can be minimized using of non-
informative priors. Second, estimates of model parameters that
might otherwise be poorly determined by the data can be
enhanced by imposing restrictions on these parameters via their
prior distributions. However this can also be done in a Bayes modal
framework, which is closely related to the MML framework [34].

Recently Sinharay [47] and Sinharay et al. [48] have applied the
popular Bayesian approach of posterior predictive checks (PPCs) to
the assessment of model violations in unidimensional IRT models.
However, PPCs is not free from criticism. Bayarri and Berger [6]
have showed that PPCs also comes with problems due to twice
use of data as a result posterior p-value were conservative (i.e.,
often failed to detect model misfit) and inadequate behavior of
posterior p-values [7]. Robins et al. [41] showed that PPP values
need not be uniformly distributed under null conditions, even
asymptotically. Rather, the distribution is centered at .5 but is less
dispersed than a uniform distribution [33,41].

The advantage of a Bayesian approach, particularly when imple-
mented through Markov chain Monte Carlo (MCMC) sampling
from the posterior distribution, is the easy calculation of the poste-
rior distribution of any function of the estimates. However, the fre-
quentist approach has a long standing, more rigorously developed
tradition of statistical test for model fit. The purpose of this study is
to introduce analogous frequentist procedures (LM test) and

Bayesian procedures (PPCs) and to compare their Type I error rate
and power.

This article is organized as follows. First, the model violations,
assumptions targeted by item fit statistics, that examined in this
study are presented. The second section introduces the description
of LM statistics and PPCs. The third section outlines the design of
simulation studies. Next, results from a simulation study compar-
ing empirical Type I error rates and power for the above frame-
works are presented. Then, both frameworks are applied in the
context of an empirical example. Finally, some conclusions are
drawn, and some suggestions for further research are given.

2. Fit to IRT models

The fit of a model, or the correspondence between model pre-
dictions and observed data, is generally regarded as an important
property of model-based procedures like IRT. When a model does
not fit the data, valid use of estimated parameters is compromised.
IRT models are based on a number of explicit assumptions which
can be viewed from two perspectives: the items and respondents.
In the first case, for every item, residuals (differences between pre-
dictions from the estimated model and observations) and item fit
statistics are computed to assess whether item violates the model.
In the second case, residuals and person fit statistics are computed
for every person to assess whether the responses to the items fol-
low the model.

For unidimensional IRT models, a number of item fit statistics
may be of interest, depending on the context of the problem. These
models assume item parameters invariance, a specific shape of the
ICC, local independence, fit of response pattern, and normality of
the ability distribution, and each of these assumptions should be
checked using suitable fit measures. The first assumption entails
that the item responses can be described by the same parameters
in all possible subpopulations. The shape of ICC describes the rela-
tion between the latent variable and the observable responses to
items. Evaluation is usually done by comparing observed and
expected item response frequencies given some measure of latent
trait level. The third assumption, local independence, assumes that
responses to different items are independent given the latent trait
variable value. The important assumption evaluated from the per-
spective of person fit is the invariance of the ability parameter over
sub-tests.

In a Bayesian framework, the normal-ogive representation of
IRT models has a number of important computational advantages
[2]. Since the objective of this article is to compare the Bayesian
and the frequentist likelihood-based framework, we adopt the
normal-ogive representation and also apply it to the likelihood-
based framework. In the 1-2-, and 3-parameter models, it is
assumed that the proficiency level of a respondent (indexed n)
can be represented by one dimensional proficiency parameter 0,.
In the 3PNO model the probability of correct response to item i,
denoted by X,; = 1, as a function of 0, is given by

P(Xm‘ = 1‘0n) = Pi((}n)

ai(0n=bi)  q _t?
=+ (1-0) / T exp {T} ot

=ci+ (1 —c)P(a;i(0n, — by)). (1)

Note that &(-) is the cumulative standard normal distribution. The
three item parameters a;, b;,c; are called the discrimination, diffi-
culty and guessing parameter, respectively. The 2PNO model fol-
lows upon setting the guessing parameter ¢; equal to zero, and
1PNO model follows upon introducing the additional constraint
a=1.
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