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a b s t r a c t

Feature extraction in time–frequency domain is wildly used in fault diagnosis of rotating
machines. However, it needs more time and space to store the time–frequency informa-
tion, which restricts its practical applications, especially for remote health monitoring. A
novel parallel FISTA-like proximal decomposition algorithm was proposed for reconstruc-
tion of sparse time–frequency representation (TFR) from the limited noisy observations
based on the recently developed compressive sensing. The effectiveness of recovering
buried sparse signatures was demonstrated by numerical simulations. The proposed
method yielded better results than those obtained by the traditional RecPF method. A novel
framework for remote machine health condition monitoring was then developed via the
proposed algorithm and the advancements in wireless communication. The effectiveness
of the new proposed method for the sparse TFR in detecting bearings and gears defects
in rotating machines is further verified using many practical cases. These results illustrate
the proposed method can well retain TF signatures without clearly artifacts in the recov-
ered TFR using only very limited measurements.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Time–frequency representation (TFR) has been a field of
active research in the last few decades and remains so
today. A precise and fine representation of nonstationary
signals in the time–frequency domain is of great impor-
tance in many fields, and especially in mechanical fault
diagnosis. Traditional TFRs represent energy or power of
signals in two-dimensional functions of both time and
frequency, which accurately reveal fault signatures in
diagnostics. Currently, different TFR uses different kernel
function, for example, the short-time Fourier transform
(STFT) which has a linear kernel, the Wigner–Ville distribu-
tion (WVD) which has a quadratic kernel and the wavelet

transform which uses an analysis basis of signals con-
strained in both time and frequency. Most of these TFRs
have been successfully applied to waveform data analysis
in fault diagnosis of gear, bearings and other mechanical
systems [1]. The WVD is one of the most popular quadratic
TFRs, which distributes the energy of the signal over time
and frequency, offering good time–frequency localization
and preserving time–frequency shifts. In order to alleviate
the undesired effect of the quadratic cross-terms, variants
of the original WVD based on smoothing in frequency
and/or time have been proposed: the smoothed-pseudo
Wigner–Ville distribution (SPWVD). SPWVD was recently
used in the time–frequency manifold correlation matching
for periodic fault identification in rotating machines [2].
Choi–Williams distribution overcomes the drawbacks of
the STFT and Wigner distribution, and provides high
resolution in time and frequency while suppressing
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interferences. Choi–Williams reduced interference time–
frequency distribution was also utilized in machinery
diagnostics [3]. In addition, some data-driven signal
decomposition methods were developed to construct the
third time–frequency category, such as local mean decom-
position [4,5] and empirical mode decomposition [6].

TFR provides potentially strong features for the nonsta-
tionary signal analysis. TFR is generally represented as a
two-dimensional grey-scale/color picture, where one axis
represents time and the other represents frequency while
the grey/color values represent the energy at a specific
instant in time and frequency band. However, these repre-
sentations contain a huge amount of information, for
example, for a 64-ms signal with the sampling frequency
of 16 kHz, the TFR with a resolution of 512 ⁄ 1024 will con-
tain 524,288 TF samples. Due to the computational com-
plexity issues, the application of such a huge amount of
data in practical applications is impossible, especially for
remote transmission and real-time applications.
Additionally, not all the information in a TF plane repre-
sents the signatures of the measured signals. Therefore,
in order to make a TFR more suitable for any diagnosis
application, it is essential to record TFR while removing
the redundant information as much as possible.

Due to increased automation, fast sampling rates and
advantages in computing power, data increase daily.
There is also a need for approaches that can reduce the
real-time burden on the data saving and remote diagnos-
tics. Some techniques have been recently proposed to com-
press signals in time domain based on a transform
approach. Marius et al. proposed compression method for
mechanical vibration signals which was based on the
orthogonal transform decomposition into a large number
of subbands [7]. Guo et al. developed a signal compression
method based on the optimal ensemble empirical mode
decomposition for bearing vibration signals [8]. Another
method for rotating mechanical vibration compression
using a two-dimensional lifting wavelet transform was
developed in [9], which converted periodical vibration data
from one-dimensional to two-dimensional in order to
reduce the dependency both within a single cycle and
across cycles. However, all these methods are only devel-
oped to compress temporal signals. The compression has
never conducted in the time–frequency domain in the
fields of the practical applications of machine diagnosis.

Compressed (compressive) sensing (CS) was a recently
proposed framework that enables the recovery of a sparse
signal from a few of its measurements by exploiting the
sparsity as the prior knowledge of the original signal.
Most of CS-based applications lie in computational photog-
raphy and seismic data processing. CS was first adopted to
long-term acoustic emission-based structural health
monitoring in [10]. Actually, signals in the time–frequency
domain has better sparsity which has been demonstrated
in the works [11,12]. CS-based sparse TFR of nonstationary
signals in the presence of impulsive noise was carried out
by simulations in [13]. Instantaneous frequency and
time–frequency signature estimation was developed using
CS in [14]. Nevertheless, the traditional orthogonal match-
ing pursuit (OMP) was used in the reconstruction process
in the above works [13] and [14]. A joint time–frequency

distribution based on the Wigner–Ville distribution and
CS is explored for radar signature analysis [15], which pro-
vided the localization of the Wigner–Ville with reduced
cross terms. However, the compression performance was
not mentioned in [15]. In addition, the traditional com-
pression methods do the sampling and compression
separately.

CS is utilized in recovering the sparsity TFR for the
off-line and remote machine health monitoring in this
work. The main contributions of the work are outlined as
follows: (1) A novel parallel FISTA-like proximal decompo-
sition algorithm (PFPDA) algorithm is proposed for recon-
struction of sparse TFR from noisy observations; (2) a
new framework for remote and off-line machine health
condition monitoring is then introduced via the advance-
ment in wireless communication; (3) The sparsity of the
TFR for measured vibration signals have been verified
which is the premise of CS-based method for the diagnosis
applications. The remainder of the paper is organized as
follows. In Section 2, CS theory is first briefly recalled.
The proposed parallel FISTA-like proximal decomposition
algorithm for sparse TFR is then given in Section 3.
Simulation tests for the evaluation of the proposed method
are presented in Section 4. The novel framework for
remote machine health condition and practical applica-
tions for the proposed method in diagnosis of bearings
and gears are conducted in Section 5. Conclusions are
drawn in Section 6.

2. Compressive sensing theory

CS is a novel technique that enables sampling below
Nyquist rate, without (or with little) sacrificing reconstruc-
tion quality. It is based on exploiting signal sparsity in
some typical domains. For a piece of finite-length,
real-valued 1-D discrete signal s, its representation in the
domain W is

s ¼
XN

i¼1

wixi ¼ W � x ð1Þ

where x 2 RN and s 2 RN are N � 1 column vectors, and
W 2 RN�N is an N � N basis matrix with vectors fwig
(i ¼ 1;2; . . . ;N) as a column. Signal s is K-sparse if K out
on the coefficients of x are nonzero in the domain W, and
it is sparse if K � N. Take MðK 6 M 6 NÞ linear, nonadap-
tive measurement of s through a linear transform U,

b ¼ Us ¼ UWx ¼ Ax ð2Þ

where U 2 RM�N is an M � N matrix and each of its M rows
can be considered as a basis vector, usually orthogonal and
b 2 RM is a column vector. Both b and x are formed by stack-
ing the columns of their corresponding two-dimensional
time–frequency plot. Signal s is thus transformed, or down
sampled to an M � 1 vector y. Given a vector x, one may
recover the desired underlying signal via an inverse trans-
form, for example, an inverse DCT or wavelet transform
depending on which basis is employed in sparse represen-
tation. The measurement matrix U must allow the recon-
struction of the original signal from M < N measurements.
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