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Abstract: This paper deals with the zero equilibrium stabilization problem for affine systems
that have control input singularities. We consider a class of scalar input systems written in
a canonical form with the input coefficient vanishing to zero on a set of points in the state
space that includes the origin. The necessary and sufficient conditions are obtained for the zero
equilibrium stabilizability of such affine systems. As an example, stabilization of third-order
dynamical systems by means of constant and variable state feedback controls is considered.
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1. INTRODUCTION

One of the serious drawbacks to stabilizing a nonlinear
dynamical system is the presence of control input singu-
larities, i.e. existence of a set of points in the state space
where the coefficient of input becomes null. This restricts
the applicability of such well known nonlinear control
techniques as feedback linearization, integrator backstep-
ping and sliding mode control. Even standard Jacobian
linearization may fail since the linear approximation of
such a system about a singular point is independent of
the control input.

The control singularity problem has motivated much re-
search during the past decades, see e.g. Chen and Ballance
(2002), Commuri and Lewis (1995), Emel’yanov and Kr-
ishchenko (2012), Guo et al. (1996), Hauser et al. (1992),
Leith and Leithead (2001), Li and Krstić (1997), Ratliff
and Pagilla (2006), Sun et al. (2009), Tomlin and Sastry
(1998), Yeom and Choi (2006), Zhang et al (2008). In
case of input-output linearization, the input singularity
appears for the non-regular systems, i.e. those that do
not have a well-defined relative degree (see e.g. Isidori
(1995)). For the class of strict feedback systems, the virtual
control singularities turn out to be an essential obstacle to
applying the integrator backstepping technique, see Li and
Krstić (1997).

One of the early ideas to cope with the input-output
linearizing control singularities was to use an approximate
feedback linearization technique which is based on ap-
proximating the system in question by another nonlinear
system that is feedback linearizable, see Hauser et al.
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(1992). This is done by neglecting some higher order terms
that lead to the singularity. In Zhang et al (2008) it is
shown that neighborhood of the input-output linearizing
control singularity can be divided into two regions. In one
of the regions, the system still may have a well-defined
relative degree and is input-output linearizable. The work
of Leith and Leithead (2001) provides sufficient conditions
for existence of arbitrarily accurate approximate input-
output linearizing control laws. However, approximate
feedback linearization allows to achieve only local stabi-
lization results that are valid close to the singular points,
if applicable.

A more promising approach is to use the feedback lin-
earization control away from the singularities and switch
to some other control law, for instance, an approximate
feedback linearization control, when the state is close to
the singular points, see Chen and Ballance (2002), Tom-
lin and Sastry (1998), Zhang et al (2008). Such tech-
nique helps avoid singularities of the control law and,
meanwhile, broaden the domain of applicability of ap-
proximate stabilizing feedbacks. More control switching
schemes can be found, for instance, in Commuri and Lewis
(1995), Emel’yanov and Krishchenko (2012), Guo et al.
(1996),Yeom and Choi (2006).

However, at present, there is no general answer to the
question if stabilization of a nonlinear system is possible
in the presence of control input singularities. In this
paper, we are interested in the problem of stabilizability of
smooth dynamical systems that are given in the following
canonical form

y(n) + f(y, ẏ, . . . , y(n−1)) = g(y, ẏ, . . . , y(n−1))u, (1)

where y = (y, ẏ, . . . , y(n−1)) ∈ Rn is the state vector, u ∈ R
is the control input, f(0) = 0, g(y) is equal to zero on a
set of points in the state space, that contains the origin.
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and Pagilla (2006), Sun et al. (2009), Tomlin and Sastry
(1998), Yeom and Choi (2006), Zhang et al (2008). In
case of input-output linearization, the input singularity
appears for the non-regular systems, i.e. those that do
not have a well-defined relative degree (see e.g. Isidori
(1995)). For the class of strict feedback systems, the virtual
control singularities turn out to be an essential obstacle to
applying the integrator backstepping technique, see Li and
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Hence, the origin y = 0 is an equilibrium point of the
system (1).

Notice that the conventional feedback linearization control
law fails to stabilize the zero equilibrium of the system (1),
since the function 1/g(y) becomes unbounded on the set
{y | g(y) = 0} of singular points and is not defined on this
set.

The key results provided by this note are the necessary
conditions for stabilizability of nonlinear systems of the
form (1). In the third-order case, we find sufficient con-
ditions for stabilizability of the origin by means of con-
stant controls. This paper also suggests a feedback control
switching scheme to practically stabilize (see e.g. Byrnes
(2008)) the origin in spite of the presence of control input
singularities.

The remaining of the paper is organized as follows. The
necessary conditions for stabilizability of affine systems
given by (1) are obtained in section 2. Section 3 contains
the sufficient conditions for stabilizability of third-order
affine systems by constant controls. In section 4 the
suggested feedback control switching scheme is discussed.
An illustrative example and numerical simulation results
are presented in section 4 to illustrate the performance of
the proposed controller. Finally, the paper concludes with
some remarks in Section 5.

Notation: Further in the paper, ∂S denotes the boundary
of a set S ⊂ Rn. For any two vectors y = (y1, . . . , yn) ∈ Rn

and z = (z1, . . . , zn) ∈ Rn the inequality y ≥ z implies that
yi ≥ zi, i = 1, n. For a vector x ∈ Rn, ‖x ‖ stands for the
Euclidean norm.

2. NECESSARY CONDITIONS FOR
STABILIZABILITY

Consider a smooth affine system of the form (1) written
as

y(n) + f(y) = (y(n−1) − ϕ(ŷ))u, (2)
where ŷ = (y, ẏ, . . . , y(n−2)), ϕ(0) = 0. Let aj = f ′

y(j)(0),
j = 0, n − 1; li = ϕ′

y(i)(0), i = 0, n − 2. We also define

l̂ = (l0, l1, . . . , ln−2) and ξ̂ = (ξ0, ξ1, . . . , ξn−2), where
ξ0 = an−1l0 + a0 + ln−2l0,

ξi = an−1li + ai + ln−2li + li−1, i = 1, n − 2.

Theorem 1. If l̂ > 0; ξ̂ < 0, then there is no control law
that stabilizes the equilibrium point y = 0 of the system
(2).

Proof. Let
g(y) = y(n−1) − ϕ(ŷ).

To examine orientation of the vector field

F =
{

ẏ, . . . , y(n−1), −f(y) + g(y)u
}

of the system (2) on the surface g(y) = 0, compute the
derivative

Fg(y) =
dg

dt

∣∣∣
(2)

=
(
y(n) −

n−2∑
i=0

ϕ′
y(i)(ŷ)y(i+1)

)∣∣∣
(2)

= −f(y) + g(y)u −
n−2∑
i=0

ϕ′
y(i)(ŷ)y(i+1)

and restrict it to the surface y(n−1) = ϕ(ŷ):

Ψ(ŷ) ≡ Fg(y)
∣∣∣
y(n−1)=ϕ(ŷ)

= −f(ŷ, ϕ(ŷ))

−
n−3∑
i=0

ϕ′
y(i)(ŷ)y(i+1) − ϕ′

y(n−2)(ŷ)ϕ(ŷ).

Since
Ψ′

y(ŷ) = −f ′
y(ŷ, ϕ(ŷ)) − f ′

y(n−1)(ŷ, ϕ(ŷ))ϕ′
y(ŷ)

−
n−3∑
j=0

ϕ′′
y(j)y(ŷ)y(j+1) − ϕ′′

y(n−2)y(ŷ)ϕ(ŷ)− ϕ′
y(n−2)(ŷ)ϕ′

y(ŷ),

Ψ′
y(i)(ŷ) = −f ′

y(i)(ŷ, ϕ(ŷ)) − f ′
y(n−1)(ŷ, ϕ(ŷ))ϕ′

y(i)(ŷ)

−
n−3∑
j=0

ϕ′′
y(j)y(i)(ŷ)y(j+1) − ϕ′

y(i−1)(ŷ)

−ϕ′′
y(n−2)y(i)(ŷ)ϕ(ŷ) − ϕ′

y(n−2)(ŷ)ϕ′
y(i)(ŷ), i = 1, n − 2,

we have
Ψ′

y(0) = −f ′
y(0) − f ′

y(n−1)(0)ϕ′
y(0) − ϕ′

y(n−2)(0)ϕ′
y(0)

= −a0 − an−1l0 − ln−2l0 = −ξ0,

Ψ′
y(i)(0) = −f ′

y(i)(0) − f ′
y(n−1)(0)ϕ′

y(i)(0)

−ϕ′
y(i−1)(0) − ϕ′

y(n−2)(0)ϕ′
y(i)(0)

= −ai − an−1li − li−1 − ln−2li = −ξi, i = 1, n − 2.

Hence, since Ψ(0) = 0, one gets

Ψ(ŷ) = −
n−2∑
i=0

ξiy
(i) + α(ŷ)‖ ŷ ‖

= ‖ ŷ ‖
(n−2∑

i=0

(−ξi)
y(i)

‖ ŷ ‖
+ α(ŷ)

)
,

where α(ŷ) → 0 as ‖ ŷ ‖ → 0.

Let ξ∗ = min{−ξ0, . . . ,−ξn−2} > 0, ν = (ν0, . . . , νn−2),
where

νi =
y(i)

‖ ŷ ‖
, i = 0, . . . , n − 2,

N = {ν : ν > 0, ‖ ν ‖ = 1}, N = {ν : ν ≥ 0, ‖ ν ‖ = 1}.
For the function

ψ(ν) =
n−2∑
i=0

νi

we obtain
ψ(ν)|N ≥ inf

N
ψ(ν) ≥ min

N
ψ(ν) = ν∗ > 0,

because N is a compact set and ψ(ν)|N > 0.

If ŷ > 0 one gets
Ψ(ŷ) ≥ ‖ ŷ ‖(ξ∗ψ(ν) + α(ŷ)) ≥ ‖ ŷ ‖(ξ∗ν∗ + α(ŷ)).

Therefore, there exists ε1 > 0 for which the inequality
Ψ(ŷ) > 0 holds for all ŷ > 0 such that ‖ ŷ ‖ < ε1.

Further, since ϕ(0) = 0, we have

ϕ(ŷ) =
n−2∑
i=0

liy
(i) + β(ŷ)‖ ŷ ‖,

where β(ŷ) → 0 as ‖ ŷ ‖ → 0. By repeating the previous
arguments, without loss of generality, one gets ϕ(ŷ) > 0
for all ŷ > 0; ‖ ŷ ‖ < ε2.
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