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Abstract: The optimal control problem for continuous-time nonlinear systems with nonlinearity in state
is formulated and solved. A solution to the problem using state-dependent Riccati equation method
(SDRE) is established, procedure for solving the problem is proposed and illustrated with a numerical

example.
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1. INTRODUCTION

Optimal control of electric motors is an area of active
research worldwide. Efforts concentrate on finding solutions
which guarantee high immunity of the drive system in terms
of realizing prescribed trajectories while minimizing
associated errors in position, velocity or torque [1,2,5,6]. The
literature coverage in this field is immense, but some specific
topics deserve to be mentioned, in particular the optimal
control theory related to minimization of energy delivered to
the drive [6,7,9]. In this area, linear quadratic regulation is a
well-established and generally accepted for the synthesis of
control laws for linear systems [7,8]. However, a variety of
nonlinear models can be found in engineering, economics,
social sciences, biology and medicine, etc [9]. In literature
exist solutions for optimal control of nonlinear systems, but
the best suited approaches for designing nonlinear controllers
are state-dependent Riccati equation approach and frozen
Riccati equation method [4,6,10,11].

In this paper, as a new contribution in area related to the
optimal control of nonlinear systems, the control problem for
continuous-time nonlinear systems with nonlinearity in state
is formulated and solved. The approach to the optimal control
using nonlinear feedback controller enables accurate
determination of optimal control allowing optimal control
theory to be employed [4,10,11]. This is the focus of this
paper.

2. OPTIMAL CONTROL PROBLEM

Consider the continuous-time nonlinear system
X = Ax +F¥(x)+BU (1)
where xeR”, UeR"are the state and input vectors,

respectively, W(x)eR”! is a nonlinear function of x and

AeR™, FeR™?”, BeR”™ . We wish to find an

admissible control U e R” that minimizes performance index
1 [e o)

J(U)= 3 I (x"Qx+ UTRU Jir )

0

where Qe R™”

matrix, R e R™" is a symmetric positive-definite matrix.

The optimal control problem for the nonlinear continuous-
time systems (1) can be stated as follows. Given matrices
AeR™ BeR"™ FeR” and QeR"™, ReR™" of

the performance index (2), find a control Ue®R™ for
te[to,oo] that controls the system state vector from x, to

is a symmetric semi positive-definite

X, while minimizing the performance index (2).

Theorem 1. Let x’ Qx+U'RU and Ax+F¥(x)+BU be
of their
arguments. Suppose that U'e C[tO,OO] is an optimal control
for the functional J(U):C[to,oo]—>iR defined as follows: If
Ue C[to,oo], then considering functional (2), x denotes the

continuously differentiable functions of each

unique solution to the nonlinear differential equation (1).
To solve the problem, we define the Hamiltonian

H= %(XTQX+ UTRU)+pT(Ax +FP(x)+BU)  (3)
and Theorem 1 can be equivalently expressed in the
following form.

Theorem 2. Ler x' Qx+U'RU and Ax+F¥(x)+BU be
of their
arguments. If U EC[tO,oo] is an optimal control for the
functional (2) subject to the state equation (1) and if
X denotes the corresponding state, then there exists a
p eC' [to,oo] such that

OH ( «

U

continuously differentiable functions of each

,x*,u*,t):o for ¢ e|ty,0] (4)

and

x OH ( «

p :—g ,x*,u*,t) for te[to,oo] and p*(oo)=0. (5)

where p* is the co-state function and (5) is the adjoint
differential equation.
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From Theorem 2, it follows that any optimal input U" and

the corresponding state x_ satisfies (4) that is

aH * T*
ZZ_RU+B'p =0. 6
50 p (6)

Thus optimal control is
U =-R'B/p (7
and adjoint differential equation
T
P Z_Z_ZZ{AT{Z_\H FT}p*—Qx. )

Consequently, we have nonlinear time-invariant differential
system of equation:

X =Ax +F‘I’(x*)— BR'B'p’
T
. . 9
P =—a£=—[AT+Fa—:Ij FT]P -Qx ©)

for t e [to,oo], X (f)) =X, ‘I’(xo): ¥, and p (0)=0.
This system of equation deals with initial x*(to) =Xg,
‘I’(XO) =¥, and final condition p*(oo) =0.

Theorem 3. Let p* be a combination of linear and
nonlinear part of the system (1)

p =K (X +K,()e(x) (10)
and let X~ be the solution of nonlinear state equation
£ =|A-BRB'K, (<K +[F- BRB'K, (<) (x) (1)

for te[to,oo], x*(to):xo, ‘l’(xo):‘l’o then vectors X, P
are the unique solution of (9) where matrix gains

K,(x) e R, K,(x)eR"™ are solutions of following
nonlinear equation system (state dependent Riccati
equations).

K, (X)A + [AT + JT(x)FT]Kl(x) ~K,(x)BR'B'K,(x) + (12)
K, (x)J(x)A - K, (x)J(x)BR'B'K,(x) +Q =0

K,(x)F - K,(x)BR'B"K,(x) -

K, (x)J(x)BR'B'K, (x) + ) (13)

K, (x)J(x)F + [AT + JT(x)FT]Kz(x) =0
where J(x) = s e R,
ox

In above theorem, the nonlinear system of equation is
obtained equating adjoint differential equation (8)

T
p:—%[: —[AHE—H FT}p—Qx_

—[[AT+JT(X)FT]K1(X)+Q]X—

[AT +JT(x)FT]K2(x)‘I‘(x)
and differential form of (10)

(14)

p =K, (0)x+ K, (0)¥(x)+ K, () + K, () ¥(x) =
= K, (x)x + K, (x)¥(x)+ Kl(x)X+K2(x)z—‘PX =
X
K (x)x+ K, (0)W(x)+ [K; () + K, (0I () i =
[K, (%) + K, (x)J(x) [Ax + F¥(x)+ BU] =
K, (%) + K, () (%)
[Ax+F‘I’(x)—BR’1BT [Kl(x)x+K2(x)‘I’(x)]]:
K0 +[K, (0 + Ky(0Ja- |
[K,(x) + K, (x)J (x) BR'BK, (x)
K, (%) +[K; (%) + K, ()J(X)JF - (x)
K, (%) + K, (x)J(x) BR'B"K, (x)
To be consistent with [4,11], to perform optimality criterion,
the equation (15) may be written in form where the optimal

control for (1) and (2) may be found by solving nonlinear
equation system with unknown K;(x), K,(x) related to

(15)

linear and nonlinear state x and ¥(x).

K, () + K, (0)I(x)]A -
[K,(x)+K,(x)I(x)BR'B'K, (x)}x
K, (0 +K,()I®)JF -
|[K,(x)+ K, (x)I(x)BR'B'K, (x)
[AT +JT(x)FT]K1(x)+Q]x +
A"+ J(x)TFT]K2(x)‘I’(x) =0

The equation we may separate considering terms related to x
and ‘I’(x) Then, we have two nonlinear equations with

unknown K;(x), K,(x):
[K,(x) +K2(x)J(x)][A—BR“BTKl(x)]+

}v(x)+ (16)

, 17
[AT +J(x)TFT]K1(x) +Q=0 1
[K,(x)+ Kz(x)J(x)][F - BR*‘BTKz(x)]Jr

. (18)
[AT +JT(x)FT]K2(x) =0

The system of equation (17)-(18) is presented in more
suitable form by (12)-(13).
Proof From (9) we have

dix| | A -BR'B"  [x] [F¥(x)
ax 19
dtl:p*:l {—Q —[AT+JT(x)FTﬂL*}{ 0 }’( )

furthermore vectors x p* satisfy X () =Xq, ‘I’(XO) =Y,,
p*(oo) =0 and x*(oo) =0. So the pair x, p* satisfy (19).

The uniqueness can be shown as follows. If (x;,p,) and
and x lies

(x,,p,) satisfy (19) for x; close to x,

somewhere between X

Ap =p, —p, satisfy

d {Ax}: A ~-BR'B/ {Ax}{F‘I’(x)} 20)
dt|Ap| |-Q —[AT+JT(X)FT Ap 0

for t e [to,oo], Ax(t)) =0 and Ap(ecc) =0. It implies that

and x,, then Ax=x;-x, and
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