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Abstract: In this talk, the problem of robust stabilization of bilinear control systems is
considered. Based on the technique of linear matrix inequalities and quadratic Lyapunov
function, the so-called robust stabilizability ellipsoid is designed such that the trajectory of the
closed-loop system, starting inside the ellipsoid asymptotically tends to zero for all admissible
uncertainties. The results obtained allow to design an approximation of the robust stabilizability

domain of the uncertain bilinear control system.
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1. INTRODUCTION

Problems of stabilization of bilinear control systems has
got a lot of attention in the literature, especially since the
appearance of the monograph Mohler (1973); see also Ryan
and Buckingham (1983); Chen et al. (1991), and others.
At the same time, a variety of different approaches was
proposed. For example, in Celikovsky (1990, 1993), linear
transformation is searched such that the bilinear system
becomes a linear one. For other areas associated with using
the observers, see Tibken et al. (1996).

Note also the works by Belozyorov (2002, 2005), where, on
the basis of sufficient conditions of stability for quadratic
systems of differential equations, a method of constructing
a linear control for a bilinear systems is developed. In the
certain papers the ellipsoidal approach is used to the topic,
see e.g. Tibken et al. (1996). We note also a number of
works devoted to the design of nonlinear control laws for
stabilization of bilinear systems, e.g., see Coutinho and
de Souza (2012); Andrieu and Tarbouriech (2013); Omran
et al. (2014); Kung et al. (2012).

Some of the most ideologically close works by Amato et al.
(2009); Tarbouriech et al. (2009), are devoted to the ap-
proaches based on the technique of linear matrix inequal-
ities (LMI) for the construction of quadratic Lyapunov
functions for stabilization of bilinear control systems.

The present paper however differs a lot; above all, it deals
with an uncertain bilinear control system. Further, on
top of a somewhat different statement of the problem,
we formulate the problem of maximizing stabilizability
ellipsoids with respect to a certain criterion. Moreover, in
contrast to the above mentioned papers, a new problem
of constructing stabilizability domains is formulated and
solved. Finally, we use a different technique based on the
modification of Petersen lemma.

Namely, based on the LMI-technique, see Boyd et al.
(1994), and special modification of the Petersen lemma we
propose a regular approach to the robust stabilization of

bilinear control systems via a linear static state feedback.
In the state space of the system, we design an ellipsoid
(so-called robust stabilizability ellipsoid), such that the
trajectory of the closed-loop system, starting inside the
ellipsoid asymptotically tends to zero for all admissible
system uncertainties. The natural development of this
approach allows to effectively design an approximation
of the robust stabilizability domain of bilinear control
systems.

We stress that the proposed approach is based on the
solution of convex optimization problems, yet allows for
the construction of nonconvex approximations of robust
stabilizability domains of uncertain bilinear systems.

The MATLAB-based toolbox cvx, see Grant and Boyd
(2014), was used for computations.

2. UNCERTAINTY-FREE CASE
2.1 Statement of the Problem

Consider the bilinear control system
&= Az +bu+ Dzu, z(0) =z, (1)

with state z € R™ and scalar control input u € R; here
A, D e R"™™ and b € R™.

We will design a linear static state feedback
w=*k'z, keR", (2)

which quadratically stabilizes system (1) inside a certain
ellipsoid

E={zeR": z'Plz<1} (3)
with matrix P > 0 and center at the origin. In other
words, the trajectories of bilinear system (1) under control
input (2), starting at any point xo inside the ellipsoid £
asymptotically tend to zero.

We call the ellipsoid & a stabilizability ellipsoid (SE) for
bilinear system (1) corresponding to control (2). Further
we will try to enlarge in some sense the SE.
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2.2 Main Result

The so-called Petersen lemma, see Petersen (1987), is ef-
fectively used in various robust statements of the problems
of stabilization and control. We present it in the following
formulation. Here and below, I is the unit matrix of appro-
priate dimension, all matrix inequalities are understood in
the sense of matrix sign-definiteness, and || - || denotes the
spectral matrix norm.

Lemma 1. Let G = GT € R™™, M € R"*P, N € RI*",
The inequality
G+MAN+NTATMT <0
is valid for all A € RP*?: ||A|| < 1 if and only if there
exists a number ¢ such that
GELEAp .

Some generalizations of the Petersen lemma was cosidered
in Khlebnikov and Shcherbakov (2008); Khlebnikov (2014),
as well as its simple proof on the basis of S-procedure,
see Yakubovich (1973). Here we give the following modi-
fication of the Petersen lemma concerned with the case of
vector uncertainty subjected to the ellipsoidal constraint.

Lemma 2. Let G = GT € R™" M € R"™4 N € R*",

and 0 < P = PT € R7%9, The inequality
G+MSN+NTS"TMT <0

is valid for all § € R?: §TP~'¢ < 1 if and only if there

exists a number ¢ such that

T T
<G+5]\]\4[PM J_Vd) <0 v

Therefore, the verification for sign-definiteness of the fam-
ily G+ MJ&N + NT§TMT is reduced by Lemma, 2 to the
problem of solvability of LMI with respect to one scalar
variable €. In the sequel, this result will be used in the
most significant way.

Now we establish the following main result.

Theorem 3. Let the matrix P and the vector y satisfy the
matrix inequalities
<AP +PAT +by" +yb" +eDPDT gy >
T = 07
Y —el
P =0,
for a certain value of the scalar parameter ¢.

Then the linear static state feedback (2) with the gain
matrix

k=P ly
stabilizes system (1) inside the ellipsoid
£ = {x eR™: z'Plz< 1}.

Moreover, the quadratic form

V(z)=z"P
is a Lyapunov function for the closed-loop system (4)
inside the ellipsoid &. v

Proof. Embracing system (1) with feedback (2), we ob-
tain the closed-loop bilinear system

&= A.x+ Dak'x (4)
with matrix A, = A + bk '.

Consider the quadratic form
V(z)=2"Qx, Q>0,
and obtain the conditions under which it will be a Lya-
punov function for system (4). To this end, we calculate its
derivative along the trajectories of the closed-loop system:
Viz)= (A + D:rka)TQx + 2" Q(Acx + Dakx) =
xTAZQa: + 2 QA+ 2" QDak x4+ 2 ka' DT Qx =
' (AJQ+QA.+QDzk" + k" DT Q).
Hence, if the condition
ATQ+QA. +QDzk" + k' DTQ <0
holds, the quadratic form V() is the Lyapunov function
for system (4).
Multiplying the obtained condition from the left and right
side by the matrix P = Q! = 0 we obtain
AP+ PA! + Dak" P+ Pka"DT < 0. (5)
We require that the matrix inequality (5) hold for any z
inside the ellipsoid (3). Thus, V() is the quadratic Lya-
punov function for the closed-loop system inside ellipsoid.
By Lemma 2, we obtain the equivalent matrix inequality

T T
(ACP +PA, +eDPD Pk> <o (6)

k'P —el
Introducing the new vector variable
y = Pk,

we eliminate k. By virtue of P > 0, the vector k is restored
in a unique way as k = P~'y. In such way we obtain the
following inequality

<AP +PAT +by" +yb" +eDPDT gy )
T <0
Y —el
with the scalar parameter e, which is linear with respect

to the matrix variable P and the vector variable y. v

Note that the feasibility of the matrix inequality (6) yields
the Hurwitz stability of the matrix A.. This means that
the required control (2) stabilizes the linear control system
& = Az + bu, see Polyak et al. (2014).

It is naturally to maximize the SE by a certain criterion; in
particular, we maximize the radius of the contained ball.

Corollary 4. Let P and ¥ be the solution of the convex
optimization problem

max Amin (P) (7)
subject to the constraints

AP+ PAT +by" +4b" +eDPDT g <0
yT —eI )
P >0,
with respect to the matrix variable P = PT € R"*", the
vector variable y € R™, and the scalar parameter ¢.
Then
&= {x eR™: z'Plz< 1}

is the SE for bilinear system (1) with feedback (2) defined
by the gain matrix

~

k=P v
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