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a b s t r a c t

Regression analysis is widely used to create continuous representations of discrete data-
sets. When the regression model is not based on the physics underlying the data, heuristic
models play a crucial role and the model choice affects the data analysis. This paper
identifies the most appropriate model in terms of Bayesian selection. The result is
applied to two practical examples, one of which is taken from a problem of chemical
thermodynamics.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

A problem of regression analysis is to determine how
many basis functions to include in the data model. Exam-
ples are finding calibration curves and polynomial repre-
sentations of thermodynamic equations of state [1–3].
Any set of basis functions can be considered; when they
are polynomials, the problem is determining the degree
of the regression.

A maximum likelihood approach leads to the highest
number of basis functions and is not the right choice. Many
authors considered this problem in different statistical
settings; their investigations led to a number of proposals
[4–8]. An information theoretic solution is the Akaike crite-
rion. It minimises the Kullback–Leibler distance between
the model and the process that generated the data and car-
ries out a trade-off between the data likelihood and the
number of free parameters [9,10]. A tutorial paper on
Bayesian reasoning by Gull [11] hides an original and

undeservedly neglected proposal, where the idea is to cal-
culate and to compare the odds that each model is true,
given the data and any available prior information.

In order to bring the Gull’s result to the metrologist’s
attention, we reassess his work and make clear its useful-
ness in selecting among different models. Although the
main idea and tools are not new, we built on the Gull’s
work and deliver three additional results. Firstly, by
slightly changing the parametrisation, we obtain an exact
expression of the model evidence – the basic ingredient
to calculate the model odds. Secondly, we explicitly dem-
onstrate the evidence invariance and asymptotic proper-
ties and that our exact expression reduces to the Gull’s
approximate one. The role of the data zero-offset is also
clarified. Thirdly, we use the evidence to consistently
include the model uncertainty in the error budget.

This results help to solve partial differential equations
by polynomials [2,3]. In this case, different choices of the
polynomial degree lead to different sets of coefficients
and, consequently, to different solutions. The availability
of an exact criterion based on the probability calculus
allows arbitrary choices – driven by the residuals analysis
– to be avoided. To illustrate these concepts, we show how
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to determine the set of basis functions that best fits the
measured values of the speed of sound in acetone, as a
function of the temperature and pressure.

2. Problem statement

We represent the y ¼ ½y1; y2; . . . yN�
T measurement

results by the linear model

y ¼Waþ �; ð1Þ

where � ¼ ½�1; �2; . . . �N�T are additive uncorrelated Gauss-
ian errors having unknown variance r2 and zero mean,
a ¼ ½a0; a1; . . . al�1�T are model parameters, W is a N � l
matrix explaining the data, Wnm ¼ wmðxnÞ, and
fw0ðxÞ;w1ðxÞ; . . . wl�1ðxÞg is a set of l basis functions. The
basis functions may be polynomials, for instance,
wmðxÞ ¼ xm, but, in general, they are any set of linearly
independent functions. The problem is to find the set of
basis functions most supported by the data; when they
are polynomials, this corresponds to find the optimal
degree of the regression. The interpretative model of the
data is summarised by the matrix W; therefore, the prob-
lem is equivalent to find – within a set of matrices explain-
ing the data – the one most supported by the data.

Following [11], we assume that hyi ¼ 0, where the angle
brackets indicate the unconditioned mean of the data, and
introduce an additional model parameter by writing
Cyy ¼ b21, where Cyy is the unconditioned covariance of
the data, 1 is the unit matrix, and b > r. As shown in
Appendix A, these assumptions are central to assign pre-
data probabilities to the possible values of the model
parameters. It is worth to notice that unconditioned means
that hyi and Cyy ¼ hyyTi are relevant to the joint distribu-
tion of y and a. In addition, we assume that all the Ws have
equal a priori probability and that there is no prior infor-
mation about the standard deviations r and b.

3. Bayesian inferences

The Bayesian approach assigns a prior probability dis-
tribution to the parameters of each model and prior odds
to the models. This allows a joint distribution of the data,
parameters, and models to be written by embedding the
separate distributions within a single one. By assigning
the same chance to each, the probability of each model
to explain the data is proportional to the odds of the
observed data given the model, no matter what the values
of the model parameters may be [12–14]. In turn, it is pro-
portional to the normalising factor of the likelihood of the
model parameters times the probability distribution syn-
thesising the information about the parameter values
before the measurement results are available.

To steer the calculation, we determine the post-data
probability density, Pða; b;rjy;WÞ, of the parameters of
each model (which parameters include the unknown stan-
dard deviations b and r) given the data y and the data-
explaining matrix W. With a somewhat incongruous use
of notation, from now on we will use the same symbols
to indicate both the random quantities and their possible

values. The post-data probability density is found via the
product rule of probabilities,

Pða;b;rjy;WÞZðyjWÞ ¼ NNðyja;r;WÞpða;b;rjWÞ; ð2Þ

where the N-dimensional Gaussian function

NNðyja;r;WÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2pÞN
q

rN
exp � jy �Waj2

2r2

 !
ð3Þ

is the likelihood of the a and r parameters, pða; b;rjWÞ is
the pre-data probability density of the model parameters,
the normalisation factor of NNðyja;r;WÞpða; b; rjWÞ,

ZðyjWÞ ¼
Z

C
NNðyja;r;WÞpða;b;rjWÞdadbdr; ð4Þ

is named model evidence, and the integration is carried out
over the hypervolume C associated to the possible a; b; and
r values.

Next, we observe that, according to (2), ZðyjWÞ is the
probability density of the data given W – whatever the
values of a and r may be. Hence, by applying again
the product rule of probabilities to the fW; yg pair, the
post-data model-probability is [15]

ProbðWjyÞ ¼ ZðyjWÞP
W ZðyjWÞ ; ð5Þ

where we assigned the same prior probability to each
model, the denominator is the normalisation factor of
ZðyjWÞ, and the sum extends to all the models. Therefore,
to solve the stated problem, the calculation of the evidence
(4) is central.

4. Pre-data distribution

To set the pre-data distribution pða; b;rjWÞ we assume
that a is independent of r. Hence,

pða; b;rjWÞ ¼ paðajW; bÞpbðbjrÞprðrÞ: ð6Þ

As to r and b, since there is no prior information, we use
the improper Jeffreys distributions [16]

prðrÞ ¼ 1=r ð7aÞ
pbðbjrÞ ¼ #ðb� rÞ=b; ð7bÞ

where #ðzÞ is the Heaviside function, which are invariant
for a change of the measurement unit of the data. As for
the a parameters, the hyi ¼ 0 and Cyy ¼ b21 constraints
dictate

pðajW; bÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðWTWÞ
ð2pÞl ðb2 � r2Þl

vuut exp � aTWTWa
2ðb2 � r2Þ

" #
: ð8Þ

The detailed derivation of (8) is given in Appendix A.
In general, the use of improper priors – like prðrÞ and

pbðbjrÞ – must be avoided, because, in such a case, the
model evidence (4) is defined only up to unknown scale
factors. However, since in this case the same factor is
included in all the evidences, this does not jeopardise the
model comparison.
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