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a b s t r a c t

It is here derived the Bayesian estimator of the noncentrality parameter of the noncentral
chi-square distribution. The corresponding frequentist estimator, based on the method of
moments, is also derived and its performance is compared with the Bayesian one. The
Bayesian estimator is obtained through an analytical derivation which provides insight into
the way the estimator works. Reference is also made here to a previously published work
on a similar subject by Attivissimo et al. (2012) [1] in order to resolve the paradox there
presented. Some defects of the analysis performed in the referenced work are identified
and carefully examined. The superiority of the Bayesian estimator is demonstrated
although achieved at the price of a greater complexity.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In the recent paper [1] arguments are presented in
favour of frequentist inference and against Bayesian
inference on the basis of what the authors of [1] judge to
be an apparent paradox. The scope here is to investigate
how Bayesian inference works when predicting the square
of an unknown quantity. It is also shown that the
arguments in [1] against Bayesian inference and in favour
of frequentist one are questionable.

The paper is structured as follows. In Section 2 the basic
assumptions about the involved quantities are done and
the statistical inference problem is defined and solved
through a frequentist analysis based on the method of
moments (MoM). The paradox described in [1] is discussed
in detail and resolved in Section 3. Section 4 is devoted to
the solution of the same inference problem but by using a
Bayesian instead of a frequentist analysis. The derivation of
Bayesian estimators is done in such a way to ease interpre-
tation of how the estimators process available information
and in particular observed values. The inference problem
essentially consists in finding the estimator of the

noncentrality parameter of the noncentral chi-square dis-
tribution with one degree of freedom. As far as we know
this problem has not been previously dealt with by using
a Bayesian approach, either in the scientific or technical lit-
erature. In Section 5 the Bayesian estimator is compared
with the frequentist one through numerical computation.
Section 6 is finally devoted to the conclusive remarks.

Only a few and essential references appear. Attivissimo
et al. [1] is the paper that triggered this work, in [2,3]
Bayesian inference is dealt with in the light of the most
authoritative standards devoted to the evaluation of
measurement uncertainty, namely [4] (the so-called
GUM) and [5] (Supplement 1 to GUM). Therefore the
reader interested in a detailed discussion about the rela-
tion between the GUM, its Supplement 1 and Bayesian
analysis is directed to [2,3] (rather than to [1], where such
relation is also dealt with). References from [6–9] provide
specific theoretical support and interpretation to the math-
ematical analysis developed in the following sections.

The following conventions are here adopted. The name
of a quantity and the corresponding random variable are
both represented by an italic and capital letter, e.g. Q. A
realization or observation of the quantity Q, as obtained
from measurement, is represented by the corresponding
italic and lower case letter, i.e. q.

0263-2241/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.measurement.2013.10.034

⇑ Tel.: +39 055 4796268; fax: +39 055 4796497.
E-mail address: carlo.carobbi@unifi.it

Measurement 48 (2014) 13–20

Contents lists available at ScienceDirect

Measurement

journal homepage: www.elsevier .com/ locate/measurement

http://crossmark.crossref.org/dialog/?doi=10.1016/j.measurement.2013.10.034&domain=pdf
http://dx.doi.org/10.1016/j.measurement.2013.10.034
mailto:carlo.carobbi@unifi.it
http://dx.doi.org/10.1016/j.measurement.2013.10.034
http://www.sciencedirect.com/science/journal/02632241
http://www.elsevier.com/locate/measurement


2. Frequentist inference on l2

Let X1, X2, ..., Xn be n independent, real, normal
quantities with expected value l and variance r2. It as-
sumed that l is unknown while r2 is known, as in [1],
and we want to predict l2. In doing this we consider two
different situations A and B, where two distinct sets of
observations are obtained from measurements, namely

A. x1, x2, ..., xn, or
B. x2

1; x
2
2 ; . . . ; x2

n:

Both situations A and B are of interest, in particular in
electrical and electronic measurements where l may
represent the value of a constant signal and r the root-
mean-square value of an additive and thermal equivalent
(zero-mean, stationary, normal) noise. In situation A the
measuring instrument (e.g. an oscilloscope or digital mul-
timeter) can detect the magnitude and sign of X. In B the
a square-law detector is implemented in the measuring
instrument (e.g. in field and power meters) that therefore
detects X2.

In this section we deal with the problem of estimating l2

by using frequentist inference based on the method of mo-
ments (MoM), see [6 , p. 301]. Let EX[g(X)] and VX[g(X)] be
respectively the expectation and variance of g(X), where
g(X) represents a general function of X. Expectation and var-
iance are calculated by using the probability density func-
tion (pdf) of X (normal in this case). In situation A the

true power l2 is estimated by ðXÞ2, where X ¼ 1
n

Pn
i¼1Xi. X

is normal with expected value l and variance r2/n. There-

fore ½X=ðr=
ffiffiffi
n
p
Þ�2 is a noncentral chi-square random vari-

able with m = 1 degrees of freedom and noncentrality

parameter k ¼ ½l=ðr=
ffiffiffi
n
p
Þ�2. Then [7, p. 943]

EX ðXÞ
2

h i
¼ r2

n
ðmþ kÞ ¼ l2 þ r2

n
; ð1Þ

and

VX ðXÞ
2

h i
¼ r4

n2 2ðmþ 2kÞ ¼ 2
r2

n
2l2 þ r2

n

� �
ð2Þ

MoM estimator in situation A (MoM estimator A) is
obtained from (1) and (2), in terms of the estimate l2

A

and its variance u2 l2
A

� �
, as

l2
A � ðxÞ

2 � r2

n
; ð3Þ

u2 l2
A

� �
� 2

r2

n
2ð�xÞ2 þ r2

n

� �
; ð4Þ

where �x ¼ 1
n

Pn
i¼1xi.

Eqs. (3) and (4) need some comments. For the validity of

(3) it is needed that EX ½ðXÞ
2� � ð�xÞ2 and that ð�xÞ2 � r2

n > 0.
Both conditions are verified when n is so large that r2/n
is small when compared with l2. Then for small sample
size and small signal-to-noise ratio MoM estimate is
expected to fail, in the sense that l2

A may be largely devi-
ated from l2 or may even be negative (which is evidently

absurd). Note that (4) has been derived substituting ð�xÞ2

to l2 in (2). Actually, the logical estimate of the variance
of l2

A should be derived substituting l2
A to l2 in (2), thus

obtaining u2 l2
A

� �
� 2 r2

n 2ð�xÞ2 � r2

n

h i
. However this estimate

of u2 l2
A

� �
is not strictly positive and therefore unacceptable

(variance is positive by definition). This lack of transpar-
ency of the MoM estimator is not incidental but intrinsic
to frequentist inference, contrarily to Bayesian inference.
Estimator (3) is consistent, in that it converges (in proba-
bility) to the true value l2 when n increases. Correspond-
ingly its variance (4) tends to zero.

In situation B the estimator of l2 (MoM estimator B) is

ðX2Þ ¼ 1
n

Pn
i¼1X2

i . ðX2Þ=ðr2=nÞ is a noncentral chi-squared
random variable with m = n degrees of freedom and

noncentrality parameter k ¼ ½l=ðr=
ffiffiffi
n
p
Þ�2. We then have

EX ½ðX2Þ� ¼ r2

n
ðmþ kÞ ¼ l2 þ r2; ð5Þ

and

VX ½ðX2Þ� ¼ r4

n2 2ðmþ 2kÞ ¼ 2
r2

n
ð2l2 þ r2Þ: ð6Þ

The MoM estimator for situation B is derived similarly
to the one for situation A as

l2
B � ðx2Þ � r2; ð7Þ

u2 l2
B

� �
� 2

r2

n
2ðx2Þ þ r2
h i

ð8Þ

where ðx2Þ ¼ 1
n

Pn
i¼1x2

i

Analogous considerations to those done above for l2
A

apply to l2
B and concerning the validity of the estimator,

its variance and consistency. When n = 1 we have
ð�xÞ2 ¼ ðx2Þ ¼ x2

1 and

l2
A ¼ l2

B � x2
1 � r2; ð9Þ

and

u2 l2
A

� �
¼ u2 l2

B

� �
� 2r2 2x2

1 þ r2� �
: ð10Þ

Finally note that when n > 1 MoM estimator A has less
bias and variance than MoM estimator B.

3. Resolution of the paradox [1]

The analysis in [1] is done in the case n = 1 where, as it
will be shown in Section 4, Bayesian inference leads to the
same results in both situations A and B, namely

El½l2� ¼ x2
1 þ r2; ð11Þ

and

Vl½l2� ¼ 2r2 2x2
1 þ r2� �

: ð12Þ

It is important to observe that in the Bayesian approach
l is viewed as a random variable whose known probability
density function is a mathematical description of the state
of knowledge about its unknown and constant true value.
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