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Abstract: The work deals with modular complex kinematic chains governed by an 
embedded distributed control system. More precisely, every joint of is assumed equipped 
with a simple local processing unit for properly driving its motion. As a consequence, 
each one of them plus the associated link is considered as a defective “1-dof only” 
separately controlled atomic manipulator, which is required to act in team with all the 
others, in order to accomplish to a common task specified in the operational space. In this 
framework the paper proposes a computationally distributed kinematic inversion 
technique that, via the on-line application of dynamic programming  (based on a moderate 
data exchange among the processing units), allows the establishment of a global self-
organizing behaviour; thus allowing the task execution by solely exploiting the control 
capabilities of each local processing unit, while also not requiring any acknowledge about 
the overall structure geometry and kinematics. Copyright © 2006 IFAC 
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1. INTRODUCTION 
 
The paper considers manipulation structures of 
possibly high complex nature (see for instance fig. 2) 
characterized by the presence of a totally distributed 
embedded control system. More specifically, every 
joint within the structure is assumed to be equipped 
with a local “processing and communication unit” 
(PCU) (micro-controller or FPGA based) interfaced 
with both the joint sensory and actuation system, 
plus a communication system allowing data 
exchanges between adjacent joints. All the PCU’s are 
assumed to be identical and devoted, each one, to 
properly drive the motion of its associated joint, thus 
allowing to consider each pair joint+link as a 
defective “1-dof-only” separately controlled atomic 
manipulator.  As it will be better clarified within the 
work, the presence of additional PCU’s, located in 
correspondence of the mechanical connection 
between two or more sub-chains (called “Y node”) 
needs to be assumed for properly processing the 
information acquired from its connected sub-chains. 
In this framework, the problem of controlling the 
operational space motion the of the overall kinematic 
structure, can be formulated in terms of decentralized 

control; requiring all the atomic manipulators to 
cooperate in order to guarantee the end-effectors of 
the overall structure to reach any assigned position 
and/or tracking any given trajectory. 
In this perspective the paper proposes an effective 
distributed kinematic inversion control technique 
that, based on a set (one for each sub-chain) of finite 
step LQ dynamic programming algorithms that 
automatically induces a global self-organizing 
behaviour, which allows the task execution. 
The distributed implementation of such dynamic 
programming algorithm is actually made feasible as 
the result of the moderate amount of information that 
every PCU needs to exchange with its adjacent ones, 
during each sampling interval. 
The data exchanged during each transmission are 
always of the same constant dimensions and 
typology, thus resulting unrelated with both the 
structural complexity of the composing sub-chains 
and the number of their d.o.f.’s. 
Moreover, since the set of information received by 
each PCU results sufficient to compute the control 
action in an optimal way, this consequently leads to a 
global optimal execution of the assigned task, 
without actually requiring any centralized a-priori 



knowledge about  the geometry and kinematics of the 
overall structure. 
The paper is here intended as a new contribution to 
the whole field of modular robotic systems, in the 
sense that it allows to enlarge the original modularity 
concepts intensively dealt within the literature ([5-
8]), till the operational space control level; being this 
last an issue that, at the best of authors knowledge, 
seems having been very little considered till recent 
years ([1]) and however, when seldom considered, 
always referred  to centralized approaches. ([9-11]). 
Meanwhile it also represents a breakthrough with 
respect to few very recent seminal works of the 
authors on the subject [2-4]. In [12] the problem of 
self-coordination within modular atomic units were 
for the first time approached, via the use of iterative 
techniques possibly exhibiting some limitations, for 
increasing complexities, as a consequence of the 
allowed communication bandwidths. 
The more efficient dynamic programming based 
decentralized approach to inverse kinematic was 
instead introduced by the authors within the very 
recent work [13], even if with reference to open 
linear kinematic chains only. 
The present paper, aims to extend the results of [13] 
to sub-chains connections of more complex nature. 

 
 

2. LINEAR KINEMATIC CHAINS 
 
Consider a generic open linear kinematic chain as in 
fig.1, where <o>, <e>, <t> denote the absolute-
frame, the end-effector frame and the tool-frame (this 
last rigidly attached to <e>) respectively. 
 

     

 
 
 
 
 
 
 
 

Figure 1. 
 
Also assume that within the first part of each 
sampling interval a forward-backward pipelined 
exchange of geometric information is performed 
along the chain of serially connected PCU’s, whose 
completion allow each i-th joint+link to know the 
current position of its base-frame <bi> w.r.t. 
absolute frame <o>, as well as that of the end-
effector <e> w.r.t. <bi> (implementation details 
regarding such computations are reported in [13]).  
In the sequel of the section we shall instead 
concentrate on the successive problem of 
distributing, within the remaining part of the same 
sampling interval, all the computation required for 
then solving the kinematic inversion problem. 
To this aim, by letting and 

be the end-effector and tool-frame 
generalized velocities (both referred and projected on 
<o>) respectively, first recall the linear relationship 
existing between the two; i.e. 
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Where non-singular matrix S represents the rigid 
body velocity transformation (projected on <o>) 
from frame <e> to <t>.  
For sake of generality, also assume that a linear 
transformation of tool-frame velocity is externally 
assigned of the form 

y&

 

          ;        (2) y H    &&& =θ 6mxH ℜ∈
 

for representing a possible partition of (for 
instance solely the angular velocity vectorω, or the 
linear velocity u only) or in alternative any other 
needed linear transformation of , as it will be for 
instance for the cases that will be better clarified is 
sections 3 and 4. 
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Then, by letting θ&  be a desired value for , the 
problem of making  maximally close to the given 
reference can be formulated finding (generally one 
of) the solutions of the following quadratic 
optimization problem 
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Where is the joint velocity vector producing the 
actual end-effector velocity , via the well known 
Jacobian relationship 
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evaluated in correspondence of the current joint 
posture q. 
By representing vector θ& via the projected form 
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where obviously 

   z )HH -(I   H    y ## &&
&& += θ  (6b) 

 )H( Span       )HH -(I    d # ⊥= θ&   (6c) 

with #H  the pseudo-inverse of matrix H and 
where z& is any finite arbitrary vector; and moreover 
by also letting 

  yS    x &&& 1−=  (6d) 

we can successively substitute representations (6a), 
(6d) into (4); thus obtaining the following equivalent 
representation of the original problem (4) 
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Where the decomposition into the sum of two 
separate squares follows directly from the orthogonal 
property expressed by (6c); while the extraction of 
the second term from the minimum operation is 
instead a consequence of its independence 
from and then from ; thus implying that the 
solution of the original quadratic optimization 
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