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A novel fault diagnosis method based on incremental enhanced supervised locally linear
embedding (I-ESLLE) and adaptive nearest neighbor classifier (ANNC) is proposed to
improve the accuracy of machinery fault diagnosis. Firstly, I-ESLLE is proposed for the
non-linear dimensionality reduction of high-dimensional fault samples obtained from
vibration signals. I-ESLLE can not only acquire the low-dimensional intrinsic manifold
structure embedded in the high-dimensional input space, but also can deal with new fault
samples in an iterative and batch model. Then, the low-dimensional fault samples are fed
into the proposed ANNC for fault type identification. ANNC exploits “representation-based
distance” to select the nearest training samples of new fault sample and identifies fault
type in a weighting strategy. Moreover, the number of nearest training samples of each
new fault sample is adaptively determined according to the density of the local distribution
of the new fault sample. To verify the validity of the proposed fault diagnosis method, a
fault diagnosis experiment of gearbox is performed, and the results indicate that the
proposed fault diagnosis method outperforms the traditional methods and achieves higher
diagnostic accuracy.
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1. Introduction proposed based on the features extracted from vibration

signals. For example, Zamanian and Ohadi [4] proposed a

Fault diagnosis is now a very important research area in
machinery engineering [1]. Accurate and rapid diagnosis of
machinery faults can not only monitor machinery operat-
ing condition to avoid fatal breakdown, but also can reduce
the maintenance costs and human labors, especially for the
huge and long running equipment [2]. Fault diagnosis is
essentially a problem of pattern recognition, so more effec-
tive feature extraction method and more accurate classifier
are needed to obtain higher diagnostic accuracy [3].

Machinery operating vibration signals contain rich fault
information, and many fault diagnosis methods are
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fault diagnosis method for gearbox based on Gaussian cor-
relation of vibration signals and wavelet coefficients, and
Jena and Panigrahi [5] developed a fault diagnosis method
for bearing and gear using adaptive wavelet transform of
vibration signal, etc. To obtain more fault information to
better characterize the faults and improve the performance
of fault diagnosis methods, a large number of features are
extracted from vibration signals in different domains [6].
However, there are always non-linear correlations and
even redundant and disturbed information existing in the
original feature set, besides of the high dimensionality
[7]. If the original features are directly inputted into the
classifier to identify the fault types, the accuracy of the
classifier will decrease while the computational cost will
increase. Therefore, an appropriate dimensionality reduc-
tion method has to be performed upon the original feature
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set to extract the intrinsic independent features and re-
move the redundant and disturbed information. The classi-
cal dimensionality reduction methods, such as principle
component analysis (PCA) [8], multi-dimensional scaling
(MDS) [9] and independent component analysis (ICA)
[10], can achieve satisfying effects for datasets with linear
structures, but their performances degenerate when facing
datasets with non-linear structures [11]. The recently pro-
posed manifold learning is a kind of non-linear dimension-
ality reduction methods, which can effectively
approximate the low-dimensional intrinsic manifold struc-
ture embedded in the high-dimensional input space
[12,13], and has already been successfully applied in facial
expression recognition [14], and gene expression [15], etc.
However, manifold learning is unsupervised, which cannot
utilize the class label information to guide the dimension-
ality reduction to be more suitable for pattern recognition,
namely to better separate samples from different classes.
To extend manifold learning into supervised learning
method, several supervised manifold learning methods
have been proposed, including supervised locally linear
embedding (SLLE) [16], supervised Isomap [17,18], and
the recently proposed enhanced supervised locally linear
embedding (ESLLE) [19], etc. Among them, ESLLE is very
suitable for pattern recognition for that it maximize the
interclass dissimilarity while minimizing the intraclass
dissimilarity by redefining the original distances between
samples. But like other manifold learning methods, ESLLE
does not provide an explicit mapping from high-dimen-
sional input space to low-dimensional feature space, so it
cannot tackle the new fault samples, which is the so-called
“out of sample problem”. In this paper, a new incremental
supervised manifold learning method named I-ESLLE is
proposed by integrating the iterative new sample embed-
ding algorithm [20] into ESLLE. I-ESLLE can properly deal
with new fault samples in an iterative and batch model,
which is more precise than obtaining the low-dimensional
representations of new samples by directly extending their
local neighborhoods [3]. And the new samples are also
added into the dimensionality reduction model incremen-
tally to make the model more flexible. After the dimen-
sionality reduction, a proper classifier is needed to finally
identify the fault types of fault samples. Conventional k
nearest neighbor classifier (CKNNC) is one of the simplest
and most commonly used classifiers, which has already
been utilized in fault diagnosis [21,22]. However, CKNNC
has several drawbacks, and Xu et al. [23] proposed a vari-
ant of CKNNC named coarse to fine k nearest neighbor clas-
sifier (CFKNNC) to improve the performance of CKNNC,
which exploit “representation-based distance” rather than
Euclidean distance to select the nearest training samples of
new sample. Nevertheless, CFKNNC still needs to set the
number of the nearest training samples of new sample
and treats all the nearest training samples equally while
identifying the class label of the new sample, which may
weaken the classification capacity of CFKNNC. This paper
proposed a new extended version of CFKNNC named
ANNC. ANNC assigns each training sample a weight
according to its contribution in representing the new sam-
ple and identifies the class label of the new sample in a
weighting strategy. Moreover, the number of nearest

training samples of each new fault sample is adaptively
determined according to the density of the local distribu-
tion of the new sample. By doing this, the selected nearest
training samples can well represent the new sample, and
those nearest training samples, which are more similar to
the new sample, can get higher weight in decision of the
class label of the new sample. As a result, ANNC can get
higher accuracy than CFKNNC. At last, a novel fault diagno-
sis method is proposed based on [-ESLLE and ANNC, and
the procedure of this method is as follows: Firstly, features
are extracted from the original vibration signal to obtain
high-dimensional fault samples. Then, the high-dimen-
sional fault samples are processed by I-ESLLE to acquire
the low-dimensional representations of the fault samples.
Finally, the low-dimensional fault samples are fed into
ANNC for classifier training and fault type identification.

The remainder of this paper is organized as follows. In
Section 2, locally linear embedding (LLE), SLLE and ESLLE
are reviewed briefly, and then [-ESLLE proposed in this pa-
per is described in detail. In Section 3, we briefly review
CKNNC and CFKNNC, and ANNC is described at the end of
this section. In Section 4, the novel fault diagnosis strategy
based on I-ESLLE and ANNC is discussed. A fault simulation
experiment of gearbox is performed in Section 5 to verify
the validity of the proposed fault diagnosis method. Final-
ly, Section 6 provides the conclusion.

2. Incremental enhanced supervised locally linear
embedding

2.1. Locally linear embedding

Given a data set X={x;e R®,i=1, ..., N} in the high-
dimensional input space, the objective of LLE [12] is
regaining the low-dimensional representation of X, which
is denoted by Y={y;eR%,i=1, ..., N(d < D). The central
idea of LLE is keeping the local neighborhood structure of
the high-dimensional data set X unchanged while mapping
X into the low-dimensional feature space. LLE mainly con-
tains three steps as follows:

(1) Find the k-nearest neighbors X; = {x]’l, j=1,...k}of
each sample x; € X.

(2) Compute the reconstruction weights Wj; of x}l that
minimize the reconstruction error of xj’ﬁ to Xx;.

(3) Compute the low-dimensional representation Y of X
that keeps the reconstruction weights W;;
unchanged.

In step (1), Euclidean distance is the most commonly
used criteria to select the k-nearest neighbors X; of x;. Then
in step (2), x; is reconstructed by its k-nearest neighbors X;,
and the optimal reconstruction weight Wj is obtained by
solving the constrained least-squares problem as follows:
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