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Abstract: The tracking control problem of an inverted pendulum on a cart, operating 
under modelling uncertainties and stochastic perturbations is addressed. Suitable neural 
network designs and adaptive bounding algorithms are used to approximate all the 
unknown nonlinear uncertainties and stochastic disturbances. This scheme is integrated 
into the proposed nonlinear controller in order to achieve the angle tracking on a desired 
reference function. Stability analysis based on Lyapunov functions proves that all the 
error variables are bounded in probability; simultaneously, the mean square tracking error 
enters in finite-time in an arbitrarily selected small region around the origin wherein it 
remains thereafter. The controller performance is evaluated by simulation results. 
Furthermore, the design procedure and the effect of its parameters’ selection are 
discussed. Copyright © 2006 IFAC 
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1. INTRODUCTION 

 
The inverted pendulum system is an inherent 
unstable system. Force must be properly applied to 
keep the system intact. To achieve this, proper 
control designs are required. However, the inverted 
pendulum system inherently has two equilibria, one 
of which is stable while the other is unstable. The 
stable equilibrium corresponds to a state in which the 
pendulum is pointing downwards. In the absence of 
any control force, the system will naturally return to 
this state. The stable equilibrium requires no control 
input to be applied and, thus, is uninteresting from a 
control perspective. The unstable equilibrium 
corresponds to a state in which the pendulum points 
strictly upwards and, thus, requires a control force to 
maintain this position. This is the basic control 
objective of the inverted pendulum problem. 
Furthermore, the tracking control objective of the 
inverted pendulum problem is to effectively follow a 
desired reference input.  
 

Because of its special characteristics, the inverted 
pendulum system has been essentially used in 
evaluating and comparing various control theories. It 
is often used to demonstrate concepts in linear 
control. To this end, a linearized model is obtained 
about the unstable equilibrium. This model allows 
one to design a linear controller in order to balance 
the inverted pendulum around the upward 
equilibrium (Lin et al., 1996). However, due to the 
well-known drawbacks of the local linearization, 
nonlinear control techniques are proposed to be 
applied (Anderson, 1989, Angeli, 2001). Based on 
these designs, different systems consisting from an 
inverted pendulum attached on a cart equipped with a 
motor that drives it along a horizontal axis are 
proposed to illustrate the controller performance.  
 
In this paper, such a system is considered which is 
modelled as an uncertain nonlinear system. A white 
noise is considered to act on this system due to 
unmodelled environment perturbations. Indeed, for 
output tracking control purposes of nonlinear 
unstable systems, the importance of taking into 

     



account the stochastic disturbances is evident. In the 
literature, theoretical methods are referred that 
confront separately either system uncertainties 
(Polycarpou, 1996, Spooner and Passino, 1996, 
Zhang, et al., 2000) or stochastic perturbations (Deng 
and Krstic, 1997, Liu and Zhang, 2004). A method 
that gives a solution to the combined problem is 
developed in Psillakis and Alexandridis (2006) for 
single-input single-output systems. Extending this 
method, an adaptive neural network (NN)-based 
motion controller is designed that effectively tracks 
the pole angle on a desirable reference function. To 
this end, the system variables are suitably 
transformed into error variables and appropriate 
Lyapunov functions are selected. In the sequel, 
proceeding with stability analysis, mainly based on 
these Lyapunov functions, the structure of the 
proposed tracking controller results. Particularly, 
integrating the control scheme to include suitable 
adaptive bounding algorithms, both the unknown 
nonlinear system uncertainties are approximated and 
boundedness in probability of all the error variables 
and the estimation errors is achieved. As it is proven 
in the paper the mean square tracking error enters in 
finite-time in a small region around the origin. 
Finally, the proposed controller is evaluated by 
simulation results wherein the excellent tracking 
response on a desired output reference is clearly 
verified. 
 
2. SYSTEM MODELING AND PRELIMINARIES 

 
2.1 Inverted Pendulum Model. 

 
Consider the cart with the inverted pendulum (Fig.1). 
Assume that a horizontal stochastic perturbation acts 
on the center of gravity of the stick. Using Newton’s 
laws, the dynamic nonlinear equations that describe 
the motion of the inverted pendulum on a cart can be 
obtained. Obviously, in state space form, a fourth 
order system is obtained with state variables: the pole 
angle and its derivative and the cart horizontal 
displacement and its derivative. However, since the 
precise horizontal position of the cart is of reduced 
importance, one can decouple the two first state 
equations from the last two equations by substituting 
the horizontal displacement and its derivative. It is 
proved, therefore, that eventually such a system can 
be precisely modelled by only two equations (Zak, 
2003). However, in order to include the noise term, 
an equivalent form of these equations can be written 
as follows: 
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where ( )1x t  and ( )2x t  denote the angular 

displacement  and velocity  of the pole, 
respectively, 

θ θ
29.8 /g m s=  is the acceleration due to 

gravity, M  is the mass of the cart,  is the mass of 
the pole,  is the half-length of the pole and u  is the 
applied control force. With  we denote a one-
dimensional Wiener process defined on a probability 
space  with incremental covariance 

 such that  with  white 
noise process.  
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From the form of the function h one can conclude 
that there exists a nonnegative constant 0ψ  such that  
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Assumption 1: The angular displacement is 
constrained in 1 4x π≤  so that 
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This can be made using some physical constraints in 
the design of the system (see Figure 1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. The inverted pendulum on a cart.  
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