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A B S T R A C T

One of the issue of significant interest for robotics is the fault detection, specifically when we have application in
risky circumstances. Robotic systems required a capacity to efficiently identify and endure some defects so that
they can keep achieving the required tasks while avoiding instantaneous repairing process. Consequently, we
aim in this work to propose a systematic approach for state estimation and fault detection technique to enhance
the operation of humanoid robots (HR) systems using an extended Kalman filter (EKF)-based multiscale opti-
mized exponentially weighted moving average chart (MS-OEWMA). The objectives of this work are sixfold: (1)
apply EKF technique to estimate the state variables in HR systems. The EKF is among the most popular nonlinear
state estimation methods; (2) use dynamical multiscale representation for obtaining accurate settled char-
acteristics; (3) propose a new optimized EWMA (OEWMA) based on the best selection of both smoothing
parameter (λ) and control width L; (4) combine the advantages of state estimation technique with MS-OEWMA
chart to improve the monitoring of HR systems; (5) investigate the effect of fault types (change in variance and
mean in shift) and fault sizes on the monitoring performances; (6) validate the developed technique using two
robot models: inverted pendulum and five-bar linkage. The detection results are evaluated using three fault
detection metrics: missed detection rate (MDR), false alarm rate (FAR) and out-of-control average run length
(ARL1).

1. Introduction

The use of humanoid robotics become increasing investigation do-
main for many technical fields. The good understanding of the human
body dynamics will lead to the creation of a robust model of humanoid
robotics. Humanoid robots are used frequently to assist old and sick
people as well as doing a hazardous task. They are also suitable for
other industrial applications especially in the automotive as they can
run devices and equipment intended for human operator despite the
sophistication inherited to some cases. The first humanoid robot de-
veloped in the world was WABOT-1 by Waseda University, Tokyo. The
term humanoid refers to a character or an appearance resembling that
of a human while in robotics, it indicates robots with the ability to
coordinate, collaborate, learn, communicate and interact physically
[1]. Human-Robot collaboration becomes more significant in numerous
fields and that relation has a tendency of coexistence. Some researchers
talk about circumstances where robots have to take initiatives [2]. In

such interactive context, safety and robustness becomes a major subject
[3]. The monitoring system for detection of abnormal performance has
a crucial role to ensure the good performance of any system and to
guarantee acceptable and safe working behavior [4–8]. Finding irre-
gular response in the system is useful in bounding turbulence and
keeping robust operation [9]. We can explain the fault as a form of an
allowed of mistaken behavior that produces process malfunction
without satisfying the desired goal [10,11]. In order to keep a safe and
reliable process, a detection system is needed [12–16]. Fault detection
is essential to observe the continuity of good functioning of the system
under typical circumstances for ensuring safety [4,5]. Identifying faults
in the process is used for limiting process animality and maintain it safe
and reliable [8,9].

Basically, fault detection techniques are categorized into two main
groups: data-based techniques [17–21] and model-based techniques
[22–28]. Model-based group is depending generally upon system dy-
namic structure. Thus, the selected measurements are compared with
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mathematical model under fault-free conditions. The difference be-
tween measured and expected non-faulty values (called the residuals) is
utilized to indicate fault occurrence or not. State estimation is necessary
for non-measurable quantities before being able to apply monitoring.
Practically, estimating these variables is challenging because it requires
several experimental procedures. Hence, developing and applying
technique capable of estimating these important variables is advanta-
geous. Various estimators were developed for estimating state vari-
ables. In [29], an extended kalman filter (EKF) technique is developed
by inertial sensors or leg configuration sensors in order to estimate state
of robot locomotion. In the papers [30,31], the authors have designed a
sliding model estimators for a 5-link biped robot to estimate the abso-
lute orientation of the torso. A model-based state estimation using a
planar Spring-Loaded Inverted Pendulum (SLIP) dynamic model has
been developed in [32]. In [33], an effective solution for state esti-
mation based on multiple model adaptive estimation has been pro-
posed. Bae and Oh [34], have proposed a new Kalman filter-based
approach for humanoid robot state estimation, by considering the
correlation between the state and disturbance in the estimation phase.

Other monitoring techniques that are based on models [23], are
used to detect the faults in process such as the generalized likelihood
ratio test (GLRT) [24], exponentially weighted moving average
(EWMA) charts [25], Shewhart charts [26] and CUSUM charts [35].
Regarding data-based fault detection problem, several techniques have
been developed in literature [36,37]. For example, in [36], Christensen
et al. proposed an enhanced fault detection approach based on fault
injection and learning using autonomous robots. In [37], two ap-
proaches to fault detection in robotic swarm systems are developed by
combining advantages of univariate PCA and statistical process control
charts. Also, virtual viscoelastic control model is used for the circle
formation of the robot swarm.

In the current work, we develop a new fault detection technique
that combines the benefits of exponentially weighted moving average
(EWMA), EKF and multiscale representation. The following objectives
will be sought. First, to deal with scenarios where a process model is
available, the EKF method will be applied to estimate the nonlinear
state variables and predict the behavior of humanoid robots (HR) sys-
tems. Second, an improved chart-based EWMA will be developed to
enhance the monitoring of HR systems. The EWMA chart showed good
detection enhancement with respect to Shewhart, GLRT and CUSUM
chart in cases of small and moderate faults. However, the detection
quality of EWMA needs to have relatively good information about the
changed parameters (smoothing parameter (λ) and control width L).
Thus, an optimized EWMA (OEWMA) based on the best selection of
smoothing parameter (λ) and control width (L) will be developed to
enhance the monitoring performances of the classical EWMA chart.
Nevertheless, the efficiency of any monitoring technique depends on
the quality of the available process data. Practical measurements are
usually altered with noise that hides the significant changes in the data
and reduces the performance of the applied fault detection techniques.
Multiscale representation of data is a powerful data analysis and feature
extraction tool which was successfully applied for filtering, modeling,
state estimation, fault detection, and others. Thus, combining the ad-
vantages of multiscale representation with those of optimized EWMA
should provide even further improvements in fault detection (FD). To
do that, Multiscale optimized EWMA (MS-OEWMA) is proposed for FD
in HRS. Therefore, in the current work, we develop a new fault detec-
tion technique that combines the advantages of EKF and MS-OEWMA,
in which, the detection chart MS-OEWMA is applied to the residuals
computed using the EKF. The advantages of EKF-based MS-OEWMA
method are threefold: (i) in optimized EWMA, the two parameters (L
and λ) are optimized in order to reduce the false alarm rate (FAR) and
missed detection rate (MDR); (ii) the dynamical multiscale re-
presentation is proposed to extract accurate deterministic features and
decorrelate autocorrelated measurements; (iii) MS-OEWMA chart is
able to detect smaller fault shifts in the mean/variances and enhance

the monitoring in HR systems. The results demonstrate the effectiveness
of the MS-OEWMA chart over the EWMA chart in terms of FAR and
MDR and both of them outperform the shewhart chart.

The current paper is organized as follows Section 2 presents the
description of the developed EKF-based MS-OEWMA approach. In
Section 3, the performance of the proposed technique is demonstrated
using two simulated examples, linear inverted pendulum and five-bar
linkage models. Finally, the conclusions are presented in Section 4.

2. Description of extended Kalman filter-based multiscale
optimized EWMA method

2.1. Extended Kalman filter description

As the name indicates, EKF is an extended version of the Kalman
filter (KF) [38,39]. EKF, which is considered the standard approach to
solve state estimation problems, is selected because of the following
three reasons. First, EKF is based on the linear dynamic nature of the
process. Second, it can handle the nonlinearities in the process and
observation models via linearization about the current mean and var-
iance. Third, EKF performs the estimation recursively which makes the
EKF as a suitable approach for inferring a large number of parameters
from a limited number of observations. The complete derivation of the
formulas used in the presented EKF can be found in [40]. Similar to KF,
the state vector zk is estimated via minimalizing a weighted covariance
matrix of estimated error, i.e., ̂ ̂− −z z z zE M[( ) ( ) ],k k k k

T where M is a
symmetric nonnegative definite weighting matrix. When all states are
having same importance, M may assumed to be identity matrix, this
reduces the covariance matrix to ̂ ̂= − −z z z zP E[( )( ) ]k k k k

T . The
minimizing equation may be written as follows:

̂ ̂= − −Tr z z z zJ E1
2

( [( )( ) ]).k k k k
T

(1)

To minimize the above objective function (1), EKF estimates the state
vector by a two-step algorithm: prediction and estimation (or update),
as explained below.

Prediction Step: First, one-step predictions of the augmented state
vector and the measurement vector are computed using the previously
estimated state vector and the nonlinear model, i.e.,

F R̂ ̂ ̂̂= =− − − − − −z z u y z u( , ), ( , ).k k k k k k k k k k1 1 1 1 1 1 (2)

Estimation (Update) Step:Next, an updated estimation for augmented
state vector is computed after finding the measurement vector, yk, as
shown:
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each time step. The measurement residual (error) is given by:

̂= −R z z .k k k k (4)

2.2. Multiscale optimized EWMA chart

The classical EWMA chart (Z) can be computed as [41]:

= + − = …−Z λX λ Z i N(1 ) , 1, ,i i i 1 (5)

where λ defines the smoothing parameter, Xi denotes the value of the
−i th individual observation. The initial value Z0 is set equal to process

in-control mean μ0. The EWMA chart detects a fault in the process when
Zi exceeds its control limits (UCL; upper control limit while LCL; lower
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